Cinchoo ETL — CSV Reader

Simple CSV file reader for .NET

Cinchoo
64 min readJun 18, 2021

1. Introduction

ChoETL is an open source ETL (extract, transform and load) framework for .NET. It is a code based library for extracting data from multiple sources, transforming, and loading into your very own data warehouse in .NET environment. You can have data in your data warehouse in no time. This article talks about using CSVReader component offered by ChoETL framework. It is a simple utility class to extract CSV data from file / source.

Features:

  • Fast CSV Reader, parses CSV file with 15 columns / 500,000 records in 15 seconds.
  • Stream based parsers allow for ultimate performance, low resource usage, and nearly unlimited versatility scalable to any size data file, even tens or hundreds of gigabytes.
  • Event based data manipulation and validation allows total control over the flow of data during the bulk insert process.
  • Follows CSV standard file rules. Gracefully handles data fields that contain commas and line breaks.
  • In addition to comma, most delimiting characters can be used, including tab delimited fields.
  • Exposes IEnumarable list of objects - which is often used with LINQ query for projection, aggregation and filtration etc.
  • Supports deferred reading.
  • Supports processing files with culture specific date, currency and number formats.
  • Supports different character encoding.
  • Recognizes a wide variety of date, currency, enum, boolean and number formats when reading files.
  • Provides fine control of date, currency, enum, boolean, number formats when writing files.
  • Detailed and robust error handling, allowing you to quickly find and fix problems.

2. Requirement

This framework library is written in C# using .NET 4.x Framework / .NET core 2.x.

3. “Hello World!” Sample

  • Open VS.NET 2013 or higher
  • Create a sample VS.NET (.NET Framework 4.5) Console Application project
  • Install ChoETL via Package Manager Console using Nuget Command based on the .NET environment:

.NET Framework

install-package ChoETL

.NET Core

install-package ChoETL.NETStandard
  • Use the ChoETL namespace

Let’s begin by looking into a simple example of reading CSV file having 2 columns

Listing 3.1 Sample CSV data file (Emp.csv)

Id,Name
1,Tom
2,Carl
3,Mark

There are number of ways you can get the CSV file parsing started with minimal setup

3.1. Quick load — Data First Approach

It is the zero config, quick way to load a CSV file in no time. No POCO object is required. Sample code below shows how to load the file

Listing 3.1.1 Load CSV file using iterator

foreach (dynamic rec in new ChoCSVReader("Emp.csv")
.WithFirstLineHeader())
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

Listing 3.1.2 Load CSV file using loop

var reader = new ChoCSVReader("Emp.csv").WithFirstLineHeader();
dynamic rec;

while ((rec = reader.Read()) != null)
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

You can also access csv fields by index as well. Sample below shows how to access them by index

Listing 3.1.3 Access by index

foreach (dynamic rec in new ChoCSVReader("Emp.csv")
.WithFirstLineHeader())
{
Console.WriteLine($"Id: {rec[0]}");
Console.WriteLine($"Name: {rec[1]}");
}

If the CSV file does not comes with header, CSVReader auto name the columns as Column1, Column2 … in the dynamic object.

3.2. Code First Approach

This is another zero config way to parse and load CSV file using POCO class. First define a simple data class to match the underlying CSV file layout

Listing 3.2.1 Simple POCO entity class

public partial class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
}

In above, the class defines two properties matching the sample CSV file template.

Listing 3.2.2 Load CSV file

foreach (var rec in new ChoCSVReader<EmployeeRec>("Emp.csv")
.WithFirstLineHeader())
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

3.3. Configuration First Approach

In this model, we define the CSV configuration with all the necessary parsing parameters along with CSV columns matching with the underlying CSV file.

Listing 3.3.1 Define CSV configuration

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Id", 1));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));

In above, the class defines two properties matching the sample CSV file template.

Listing 3.3.2 Load CSV file without POCO object

foreach (dynamic rec in new ChoCSVReader("Emp.csv", config)
.WithFirstLineHeader())
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

Listing 3.3.3 Load CSV file with POCO object

foreach (var rec in new ChoCSVReader<EmployeeRec>("Emp.csv", config).WithFirstLineHeader())
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
}

3.4. Code First with Data Annotation

Data annotations is a simple attribute based configuration method where attributes can be applied to POCO classes to configure the model. id is required column and name is optional value column with default value "XXXX". If name is not present, it will take the default value.

Listing 3.4.1 Define POCO Object

[ChoCSVFileHeader]
[ChoCSVRecordObject(ObjectValidationMode = ChoObjectValidationMode.MemberLevel)]
public class EmployeeRec
{
[Required]
public int? Id
{
get;
set;
}
[DefaultValue("XXXX")]
public string Name
{
get;
set;
}
public override string ToString()
{
return $"{Id}. {Name}.";
}
}

The code above illustrates about defining POCO object to carry the values of each record line in the input file. Define the members in the order of CSV columns apprears in the file. [ChoCSVFileHeader] attribute tells the parser the first line is header line. By default, validaton is turned off by the parser. To turn on, you must specify either ChoObjectValidationMode as MemberLevel / ObjectLever using ChoCSVRecordObject attribute. Id is a required property. We decorated it with RequiredAttribute. Name is given default value using DefaultValueAttribute. It means that if the Name CSV column contains empty value in the file, it will be defaulted to 'XXXX' value.

It is very simple and ready to extract CSV data in no time.

Listing 3.4.2 Main Method

class Program
{
static void Main(string[] args)
{
string csv = @"Id, Name
1, Mark
2, Tom";
foreach (var rec in ChoCSVReader<EmployeeRec>.LoadText(csv))
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}
}
}

We start by creating a new instance of ChoCSVReader object. That's all. All the heavy lifting of parsing and loading CSV data stream into the objects is done by the parser under the hood.

By default, CSVReader discovers and uses default configuration parameters while loading CSV file. These can be overridable according to your needs. The following sections will give details about each configuration attributes.

3.5. Code First with Fluent API

This is the one another approach to define POCO entity class along with custom selective CSV configuration using Fluent API. Define POCO class

Listing 3.5.1 Define POCO Object

public class EmployeeRec
{
public int Id
{
get;
set;
}
public string Name
{
get;
set;
}
public string Address
{
get;
set;
}
}

Sample below shows how to do the custom CSV field mapping using Fluent API. POCO has 3 members defined and CSV file comes with only Id, Name columns, you can use the fluent API to specify the parse to consider only Id, Name columns only.

Listing 3.5.2 Main Method

class Program
{
static void Main(string[] args)
{
string csv = @"Id, Name
1, Mark
2, Tom";
using (var p = ChoCSVReader<EmployeeRec>.LoadText(csv)
.WithField(c => c.Id)
.WithField(c => c.Name)
)
{
foreach (var rec in p)
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}
}
}
}

We start by creating a new instance of ChoCSVReader object. That's all. All the heavy lifting of parsing and loading CSV data stream into the objects is done by the parser under the hood.

By default, CSVReader discovers and uses default configuration parameters while loading CSV file. These can be overridable according to your needs. The following sections will give details about each configuration attributes.

4. Reading All Records

It is as easy as setting up POCO object match up with CSV file structure, you can read the whole file as enumerable pattern. It is a deferred execution mode, but takes care of making any aggregate operation on them. FYI, careful of doing aggregate operation on them, since these type of operations will load the entire file records into memory.

Listing 4.1 Read CSV File

foreach (var rec in new ChoCSVReader<EmployeeRec>("Emp.csv").WithFirstLineHeader())
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

or:

Listing 4.2 Read CSV file stream

using (var stream = File.Open(@"test.csv", FileMode.Open))
{
foreach (var rec in new ChoCSVReader<EmployeeRec>(stream).WithFirstLineHeader())
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}
}

This model keeps your code elegant, clean, easy to read and maintain. Also leverages LINQ extension methods to to perform grouping, joining, projection, aggregation etc.

Listing 4.3 Using LINQ

var list = (from o in new ChoCSVReader<EmployeeRec>("Emp.csv").WithFirstLineHeader()
where o.Name != null && o.Name.StartsWith("R")
select o).ToArray();

foreach (var rec in list)
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

5. Read Records Manually

It is as easy as setting up POCO object match up with CSV file structure, you can read the whole file as enumerable pattern

Listing 5.1 Read CSV file

var reader = new ChoCSVReader<EmployeeRec>("Emp.csv").WithFirstLineHeader();
EmployeeRec rec = null;

while ((rec = reader.Read()) != null)
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}

6. Customize CSV Record

Using ChoCSVRecordObjectAttribute, you can customize the POCO entity object declaratively.

Listing 6.1 Customizing POCO object for each record

[ChoCSVRecordObject(Encoding = "Encoding.UTF32", 
ErrorMode = ChoErrorMode.IgnoreAndContinue, IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All)]
public class EmployeeRec
{
[ChoCSVRecordField(1, FieldName = "id")]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName ="Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
public string Name { get; set; }
}

Here are the available attributes to carry out customization of CSV load operation on a file.

  • Delimiter - The value used to separate the fields in a CSV row. Default is Culture.TextInfo.ListSeparator used.
  • EOLDelimiter - The value used to separate CSV rows. Default is \r\n (NewLine).
  • CultureName - The culture name (ex. en-US, en-GB) used to read and write CSV data.
  • IgnoreEmptyLine - A flag to let the reader know if a record should be skipped when reading if it's empty. A record is considered empty if all fields are empty.
  • Comments - The value used to denote a line that is commented out. Multiple comments can be specified. Must be separated by comma.
  • QuoteChar - The value used to escape fields that contain a delimiter, quote, or line ending.
  • QuoteAllFields - N/A for reader.
  • Encoding - The encoding of the CSV file.
  • HasExcelSeperator - N/A for reader. Reader seamlessly recognize the excel separator if specified in the CSV file and use them for parsing.
  • ColumnCountStrict - This flag indicates if an exception should be thrown if reading an expected field is missing.
  • ColumnOrderStrict - This flag indicates if an exception should be thrown if reading an expected field is in wrong position in the file. This check will be performed only when ColumnCountStrict is true.
  • BufferSize - The size of the internal buffer that is used when reader is from the StreamReader.
  • NullValue — Special null value text expect to be treated as null value from CSV file at the record level.
  • ErrorMode - This flag indicates if an exception should be thrown if reading and an expected field is failed to load. This can be overridden per property. Possible values are:
  • IgnoreAndContinue - Ignore the error, record will be skipped and continue with next.
  • ReportAndContinue - Report the error to POCO entity if it is of IChoNotifyRecordRead type
  • ThrowAndStop - Throw the error and stop the execution
  • IgnoreFieldValueMode - A flag to let the reader know if a record should be skipped when reading if it's empty / null. This can be overridden per property. Possible values are:
  • Null - N/A
  • DBNull - N/A
  • Empty - skipped if the record value is empty
  • WhiteSpace - skipped if the record value contains only whitespaces
  • ObjectValidationMode - A flag to let the reader know about the type of validation to be performed with record object. Possible values are:
  • Off - No object validation performed.
  • MemberLevel - Validation performed at the time of each CSV property gets loaded with value.
  • ObjectLevel - Validation performed after all the properties are loaded to the POCO object.

7. Customize CSV Header

If the CSV file has header, you can instruct the POCO entity by using ChoCSVFileHeaderAttribute.

Listing 6.1 Customizing POCO object for file header

[ChoCSVFileHeader]
public class EmployeeRec
{
[ChoCSVRecordField(1, FieldName = "id")]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName ="Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
public string Name { get; set; }
}

Here are the available members to add some customization to it according to your need.

  • FillChar - N/A for reader
  • Justification - N/A for reader
  • IgnoreCase — true, CSV column matching are done with case insensitive. Otherwise false.
  • TrimOption - This flag tells the reader to trim whitespace from the beginning and ending of the CSV column header when reading. Possible values are Trim, TrimStart, TrimEnd.
  • Truncate - N/A for reader
  • IgnoreColumnsWithEmptyHeader - true, ignore CSV columns having empty headers. Otherwise false.
  • QuoteAll - N/A for reader
  • HeaderLineAt - If CSV file comes with header NOT at first line, you can use this attribute to specify the header line.
  • IgnoreHeader - true, to ignore the file header and load the data by field position.

8. Customize CSV Fields

For each CSV column, you can specify the mapping in POCO entity property using ChoCSVRecordFieldAttribute.

Listing 6.1 Customizing POCO object for CSV columns

[ChoCSVFileHeader]
public class EmployeeRec
{
[ChoCSVRecordField(1, FieldName = "id")]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName ="Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
public string Name { get; set; }
}

Here are the available members to add some customization to it for each property:

  • FieldPosition - When mapping by position, you specify the index of the CSV column that you want to use for that property. It is 1 based.
  • FieldName - When mapping by name, you specify the name of the CSV column that you want to use for that property. For this to work, the CSV file must have a header record. The name you specify must match with the name of the header record.
  • FillChar - N/A for reader.
  • FieldValueJustification - N/A for reader.
  • FieldValueTrimOption - This flag tells the reader to trim whitespace from the beginning and ending of the field value when reading. Possible values are Trim, TrimStart, TrimEnd.
  • Truncate - Truncate field value if over maximum field size.
  • Size - Maxiimum field value size of field.
  • QuoteField - A flag that tells the reader that the CSV column value is surrounded by quotes.
  • NullValue — Special null value text expect to be treated as null value from CSV file at the field level.
  • FormatText - Specify custom format specifier to parse the CSV field values.
  • ErrorMode - This flag indicates if an exception should be thrown if reading and an expected field failed to load. Possible values are:
  • IgnoreAndContinue - Ignore the error and continue to load other properties of the record.
  • ReportAndContinue - Report the error to POCO entity if it is of IChoRecord type.
  • ThrowAndStop - Throw the error and stop the execution.
  • IgnoreFieldValueMode - A flag to let the reader know if a record should be skipped when reading if it's empty / null. Possible values are:
  • Null - N/A
  • DBNull - N/A
  • Empty - skipped if the record value is empty.
  • WhiteSpace - skipped if the record value contains only whitespaces.

8.1. DefaultValue

It is the value used and set to the property when the CSV value is empty or whitespace (controlled via IgnoreFieldValueMode).

Any POCO entity property can be specified with default value using System.ComponentModel.DefaultValueAttribute.

8.2. ChoFallbackValue

It is the value used and set to the property when the CSV value failed to set. Fallback value only set when ErrorMode is either IgnoreAndContinue or ReportAndContinue.

Any POCO entity property can be specified with fallback value using ChoETL.ChoFallbackValueAttribute.

8.3. Type Converters

Most of the primitive types are automatically converted and set them to the properties. If the value of the CSV field can’t automatically be converted into the type of the property, you can specify a custom / built-in .NET converters to convert the value. These can be either IValueConverter, IChoTypeConverter or TypeConverter converters.

There are couple of ways you can specify the converters for each field

  • Declarative Approach
  • Configuration Approach

8.3.1. Declarative Approach

This model is applicable to POCO entity object only. If you have POCO class, you can specify the converters to each property to carry out necessary conversion on them. Samples below shows the way to do it.

Listing 8.3.1.1 Specifying type converters

[ChoCSVFileHeader]
public class EmployeeRec
{
[ChoCSVRecordField(1, FieldName = "id")]
[ChoTypeConverter(typeof(IntConverter))]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName ="Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
public string Name { get; set; }
}

Listing 8.3.1.2 IntConverter implementation

public class IntConverter : IValueConverter
{
public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
{
return value;
}

public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
{
return value;
}
}

In the example above, we defined custom IntConverter class. And showed how to use it with 'Id' CSV property.

8.3.2. Configuration Approach

This model is applicable to both dynamic and POCO entity object. This gives freedom to attach the converters to each property at runtime. This takes the precedence over the declarative converters on POCO classes.

Listing 8.3.2.1 Specifying TypeConverters

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.FileHeaderConfiguration.HasHeaderRecord = true;
config.ThrowAndStopOnMissingField = false;
ChoCSVRecordFieldConfiguration idConfig = new ChoCSVRecordFieldConfiguration("Id", 1);
idConfig.AddConverter(new IntConverter());
config.CSVRecordFieldConfigurations.Add(idConfig);
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name1", 2));

In above, we construct and attach the IntConverter to ‘Id’ field using AddConverter helper method in ChoCSVRecordFieldConfiguration object.

Likewise, if you want to remove any converter from it, you can use RemoveConverter on ChoCSVRecordFieldConfiguration object.

8.3.3. Custom Value Converter Approach

This approach allows to attach value converter to each CSV member using Fluenrt API. This is quick way to handle any odd conversion process and avoid creating value converter class.

Listing 8.3.3.1 POCO class

[ChoCSVFileHeader]
public class EmployeeRec
{
[ChoCSVRecordField(1, FieldName = "id")]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName ="Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
public string Name { get; set; }
}

With the fluent API, sample below shows how to attach value converter to Id column

Listing 8.3.3.2 Attaching Value Converter

using (var dr = new ChoCSVReader<EmployeeRec>(@"Test.csv")
.WithFirstLineHeader()
.WithField(c => c.Id, valueConverter: (v) => Convert.ToInt32(v as string))
)
{
foreach (var rec in dr)
{
Console.WriteLine(rec.Id);
}
}

8.4. Validations

CSVReader leverages both System.ComponentModel.DataAnnotations and Validation Block validation attributes to specify validation rules for individual fields of POCO entity. Refer to the MSDN site for a list of available DataAnnotations validation attributes.

Listing 8.4.1 Using validation attributes in POCO entity

[ChoCSVFileHeader]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.IgnoreAndContinue,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false)]
public partial class EmployeeRec
{
[ChoCSVRecordField(1, FieldName = "id")]
[ChoTypeConverter(typeof(IntConverter))]
[Range(1, int.MaxValue, ErrorMessage = "Id must be > 0.")]
[ChoFallbackValue(1)]
public int Id { get; set; }

[ChoCSVRecordField(2, FieldName = "Name")]
[Required]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }
}

In example above, used Range validation attribute for Id property. Required validation attribute to Name property. CSVReader performs validation on them during load based on Configuration.ObjectValidationMode is set to ChoObjectValidationMode.MemberLevel or ChoObjectValidationMode.ObjectLevel.

Sometime you may want override the defined declarative validation behaviors comes with POCO class, you can do with Cinchoo ETL via configuration approach. The sample below shows the way to override them.

static void ValidationOverridePOCOTest()
{
ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
var idConfig = new ChoCSVRecordFieldConfiguration("Id", 1);
idConfig.Validators = new ValidationAttribute[] { new RequiredAttribute() };
config.CSVRecordFieldConfigurations.Add(idConfig);
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Salary", 3) { FieldType = typeof(ChoCurrency) });

using (var stream = new MemoryStream())
using (var reader = new StreamReader(stream))
using (var writer = new StreamWriter(stream))
using (var parser = new ChoCSVReader<EmployeeRecWithCurrency>(reader, config))
{
writer.WriteLine("1,Carl,$100000");
writer.WriteLine("2,Mark,$50000");
writer.WriteLine("3,Tom,1000");

writer.Flush();
stream.Position = 0;

object rec;
while ((rec = parser.Read()) != null)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

public class EmployeeRecWithCurrency
{
public int? Id { get; set; }
public string Name { get; set; }
public ChoCurrency Salary { get; set; }
}

Some cases, you may want to take control and perform manual self validation within the POCO entity class. This can be achieved by inheriting POCO object from IChoValidatable interface.

Listing 8.4.2 Manual validation on POCO entity

[ChoCSVFileHeader]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.IgnoreAndContinue,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false)]
public partial class EmployeeRec : IChoValidatable
{
[ChoCSVRecordField(1, FieldName = "id")]
[ChoTypeConverter(typeof(IntConverter))]
[ChoFallbackValue(1)]
public int Id { get; set; }

[ChoCSVRecordField(2, FieldName = "Name")]
[Required]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }

public bool TryValidate(object target, ICollection<ValidationResult> validationResults)
{
return true;
}

public bool TryValidateFor(object target, string memberName, ICollection<ValidationResult> validationResults)
{
return true;
}
}

Sample above shows how to implement custom self-validation in POCO object.

IChoValidatable interface exposes below methods

  • TryValidate — Validate entire object, return true if all validation passed. Otherwise return false.
  • TryValidateFor — Validate specific property of the object, return true if all validation passed. Otherwise return false.

8.5. ChoIgnoreMember

If you want to ignore a POCO class member from CSV parsing in OptOut mode, decorate them with ChoIgnoreMemberAttribute. Sample below shows Title member is ignored from CSV loading process.

Listing 8.5.1 Ignore a member

[ChoCSVFileHeader]
public class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
[ChoIgnoreMember]
public string Title { get; set; }
}

8.6. StringLength

In OptOut mode, you can specify the size of the CSV column by using System.ComponentModel.DataAnnotations.StringLengthAttribute.

Listing 8.6.1 Specifying Size of CSV member

[ChoCSVFileHeader]
public class EmployeeRec
{
public int Id { get; set; }
[StringLength(25)]
public string Name { get; set; }
[ChoIgnoreMember]
public string Title { get; set; }
}

8.7. Display

In OptOut mode, you can specify the name of CSV column mapped to member using System.ComponentModel.DataAnnotations.DisplayAttribute.

Listing 8.7.1 Specifying name of CSV column

[ChoCSVFileHeader]
public class EmployeeRec
{
public int Id { get; set; }
[Display(Name="FullName")]
[StringLength(25)]
public string Name { get; set; }
[ChoIgnoreMember]
public string Title { get; set; }
}

8.8. DisplayName

In OptOut mode, you can specify the name of CSV column mapped to member using System.ComponentModel.DataAnnotations.DisplayNameAttribute.

Listing 8.8.1 Specifying name of CSV column

[ChoCSVFileHeader]
public class EmployeeRec
{
public int Id { get; set; }
[DisplayName("FullName")]
[StringLength(25)]
public string Name { get; set; }
[ChoIgnoreMember]
public string Title { get; set; }
}

9. Excel Field Separator

If the input CSV file contains Excel field separator, the reader automatically detects and use them as field separator.

Listing 9.1 Sample CSV file with Excel field separator

sep=,
1,"Eldon Base for stackable storage shelf, platinum"
2,"1.7 Cubic Foot Compact ""Cube"" Office Refrigerators"
3,"Cardinal Slant-D® Ring Binder, Heavy Gauge Vinyl"
4,R380
5,Holmes HEPA Air Purifier

10. Callback Mechanism

CSVReader offers industry standard CSV parsing out of the box to handle most of the parsing needs. If the parsing is not handling any of the needs, you can use the callback mechanism offered by CSVReader to handle such situations. In order to participate in the callback mechanism, you can use either of the following models

  • Using event handlers exposed by CSVReader via IChoReader interface.
  • Inheriting POCO entity object from IChoNotifyRecordRead / IChoNotifyFileRead / IChoNotifyRecordFieldRead interfaces
  • Inheriting DataAnnotation’s MetadataType type object by IChoNotifyRecordRead / IChoNotifyFileRead / IChoNotifyRecordFieldRead interfaces.
  • Inheriting IChoNotifyRecordFieldConfigurable / IChoNotifyRecordFieldConfigurable configuration interfaces

Note: Any exceptions raised out of these interface methods will be ignored.

IChoReader exposes the below events:

  • BeginLoad - Invoked at the begin of the CSV file load
  • EndLoad - Invoked at the end of the CSV file load
  • BeforeRecordLoad - Raised before the CSV record load
  • AfterRecordLoad - Raised after CSV record load
  • RecordLoadError - Raised when CSV record load errors out
  • BeforeRecordFieldLoad - Raised before CSV column value load
  • AfterRecordFieldLoad - Raised after CSV column value load
  • RecordFieldLoadError - Raised when CSV column value errors out
  • SkipUntil — Raised before the CSV parsing kicks off to add custom logic to skip record lines.
  • DoWhile — Raised during CSV parsing where you can add custom logic to stop the parsing.

IChoNotifyRecordRead exposes the below methods:

  • BeforeRecordLoad - Raised before the CSV record load
  • AfterRecordLoad - Raised after CSV record load
  • RecordLoadError - Raised when CSV record load errors out

IChoNotifyFileRead exposes the below methods:

  • BeginLoad - Invoked at the begin of the CSV file load
  • EndLoad - Invoked at the end of the CSV file load
  • SkipUntil — Raised before the CSV parsing kicks off to add custom logic to skip record lines.
  • DoWhile — Raised during CSV parsing where you can add custom logic to stop the parsing.

IChoNotifyRecordFieldRead exposes the below methods:

  • BeforeRecordFieldLoad - Raised before CSV column value load
  • AfterRecordFieldLoad - Raised after CSV column value load
  • RecordFieldLoadError - Raised when CSV column value errors out

IChoNotifyRecordConfigurable exposes the below methods:

  • RecondConfigure - Raised for CSV record configuration

IChoNotifyRecordFieldConfigurable exposes the below methods:

  • RecondFieldConfigure - Raised for each CSV record field configuration

10.1. Using CSVReader events

This is more direct and simplest way to subscribe to the callback events and handle your odd situations in parsing CSV files. Downside is that code can’t be reusable as you do by implementing IChoNotifyRecordRead with POCO record object.

Sample below shows how to use the BeforeRecordLoad callback method to skip lines stating with ‘%’ characters.

Listing 10.1.1 Using CSVReader callback events

static void IgnoreLineTest()
{
using (var parser = new ChoCSVReader("IgnoreLineFile.csv").WithFirstLineHeader())
{
parser.Configuration.Encoding = Encoding.BigEndianUnicode;

parser.BeforeRecordLoad += (o, e) =>
{
if (e.Source != null)
{
e.Skip = ((string)e.Source).StartsWith("%");
}
};
foreach (var e in parser)
Console.WriteLine(e.Dump());
}
}

Likewise you can use other callback methods as well with CSVReader.

10.2. Implementing IChoNotifyRecordRead interface

Sample below shows how to implement IChoNotifyRecordRead interface to direct POCO class.

Listing 10.2.1 Direct POCO callback mechanism implementation

[ChoCSVFileHeader]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.IgnoreAndContinue,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false)]
public partial class EmployeeRec : IChoNotifyRecordRead
{
[ChoCSVRecordField(1, FieldName = "id")]
[ChoTypeConverter(typeof(IntConverter))]
[Range(1, int.MaxValue, ErrorMessage = "Id must be > 0.")]
[ChoFallbackValue(1)]
public int Id { get; set; }

[ChoCSVRecordField(2, FieldName = "Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }

public bool AfterRecordLoad(object target, int index, object source)
{
throw new NotImplementedException();
}

public bool BeforeRecordLoad(object target, int index, ref object source)
{
throw new NotImplementedException();
}
public bool RecordLoadError(object target, int index, object source, Exception ex)
{
throw new NotImplementedException();
}
}

Sample below shows how to attach Metadata class to POCO class by using MetadataTypeAttribute on it.

Listing 10.2.2 MetaDataType based callback mechanism implementation

[ChoCSVFileHeader]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.IgnoreAndContinue,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false)]
public class EmployeeRecMeta : IChoNotifyRecordRead
{
[ChoCSVRecordField(1, FieldName = "id")]
[ChoTypeConverter(typeof(IntConverter))]
[Range(1, int.MaxValue, ErrorMessage = "Id must be > 0.")]
[ChoFallbackValue(1)]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName = "Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }

public bool AfterRecordLoad(object target, int index, object source)
{
throw new NotImplementedException();
}

public bool BeforeRecordLoad(object target, int index, ref object source)
{
throw new NotImplementedException();
}

public bool RecordLoadError(object target, int index, object source, Exception ex)
{
throw new NotImplementedException();
}
}
[MetadataType(typeof(EmployeeRecMeta))]
public partial class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
}

Sample below shows how to attach Metadata class for sealed or third party POCO class by using ChoMetadataRefTypeAttribute on it.

Listing 10.2.3 ChoMetaDataRefType based callback mechanism implementation

[ChoMetadataRefType(typeof(EmployeeRec))]
[ChoCSVFileHeader]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.IgnoreAndContinue,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false)]
public class EmployeeRecMeta : IChoNotifyRecordRead
{
[ChoCSVRecordField(1, FieldName = "id")]
[ChoTypeConverter(typeof(IntConverter))]
[Range(1, int.MaxValue, ErrorMessage = "Id must be > 0.")]
[ChoFallbackValue(1)]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName = "Name", QuoteField = true)]
[Required]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }

public bool AfterRecordLoad(object target, int index, object source)
{
throw new NotImplementedException();
}

public bool BeforeRecordLoad(object target, int index, ref object source)
{
throw new NotImplementedException();
}

public bool RecordLoadError(object target, int index, object source, Exception ex)
{
throw new NotImplementedException();
}
}
public partial class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
}

10.3. BeginLoad

This callback invoked once at the beginning of the CSV file load. source is the CSV file stream object. In here you have chance to inspect the stream, return true to continue the CSV load. Return false to stop the parsing.

Listing 10.3.1 BeginLoad Callback Sample

public bool BeginLoad(object source)
{
StreamReader sr = source as StreamReader;
return true;
}

10.4. EndLoad

This callback invoked once at the end of the CSV file load. source is the CSV file stream object. In here you have chance to inspect the stream, do any post steps to be performed on the stream.

Listing 10.4.1 EndLoad Callback Sample

public void EndLoad(object source)
{
StreamReader sr = source as StreamReader;
}

10.5. BeforeRecordLoad

This callback invoked before each record line in the CSV file is loaded. target is the instance of the POCO record object. index is the line index in the file. source is the CSV record line. In here you have chance to inspect the line, and override it with new line if want to.

TIP: If you want to skip the line from loading, set the source to null.

TIP: If you want to take control of parsing and loading the record properties by yourself, set the source to String.Empty.

Return true to continue the load process, otherwise return false to stop the process.

Listing 10.5.1 BeforeRecordLoad Callback Sample

public bool BeforeRecordLoad(object target, int index, ref object source)
{
string line = source as string;
return true;
}

10.6. AfterRecordLoad

This callback invoked after each record line in the CSV file is loaded. target is the instance of the POCO record object. index is the line index in the file. source is the CSV record line. In here you have chance to do any post step operation with the record line.

Return true to continue the load process, otherwise return false to stop the process.

Listing 10.6.1 AfterRecordLoad Callback Sample

public bool AfterRecordLoad(object target, int index, object source)
{
string line = source as string;
return true;
}

10.7. RecordLoadError

This callback invoked if error encountered while loading record line. target is the instance of the POCO record object. index is the line index in the file. source is the CSV record line. ex is the exception object. In here you have chance to handle the exception. This method invoked only when Configuration.ErrorMode is ReportAndContinue.

Return true to continue the load process, otherwise return false to stop the process.

Listing 10.7.1 RecordLoadError Callback Sample

public bool RecordLoadError(object target, int index, object source, Exception ex)
{
string line = source as string;
return true;
}

10.8. BeforeRecordFieldLoad

This callback invoked before each CSV record column is loaded. target is the instance of the POCO record object. index is the line index in the file. propName is the CSV record property name. value is the CSV column value. In here you have chance to inspect the CSV record property value and perform any custom validations etc.

Return true to continue the load process, otherwise return false to stop the process.

Listing 10.8.1 BeforeRecordFieldLoad Callback Sample

public bool BeforeRecordFieldLoad(object target, int index, string propName, ref object value)
{
return true;
}

10.9. AfterRecordFieldLoad

This callback invoked after each CSV record column is loaded. target is the instance of the POCO record object. index is the line index in the file. propName is the CSV record property name. value is the CSV column value. Any post field operation can be performed here, like computing other properties, validations etc.

Return true to continue the load process, otherwise return false to stop the process.

Listing 10.9.1 AfterRecordFieldLoad Callback Sample

public bool AfterRecordFieldLoad(object target, int index, string propName, object value)
{
return true;
}

10.10. RecordLoadFieldError

This callback invoked when error encountered while loading CSV record column value. target is the instance of the POCO record object. index is the line index in the file. propName is the CSV record property name. value is the CSV column value. ex is the exception object. In here you have chance to handle the exception. This method invoked only after the below two sequences of steps performed by the CSVReader

  • CSVReader looks for FallbackValue value of each CSV property. If present, it tries to assign its value to it.
  • If the FallbackValue value not present and the Configuration.ErrorMode is specified as ReportAndContinue., this callback will be executed.

Return true to continue the load process, otherwise return false to stop the process.

Listing 10.10.1 RecordFieldLoadError Callback Sample

public bool RecordFieldLoadError(object target, int index, string propName, object value, Exception ex)
{
return true;
}

10.11. SkipUntil

This callback invoked at the start of the CSV parsing with custom logic to skip lines. index is the line index in the file.

Return true to skip the line, otherwise return false.

Listing 10.11.1 SkipUntil Callback Sample

public bool SkipUntil(long index, object source)
{
return false;
}

10.12. DoWhile

This callback invoked at the start of the CSV parsing with custom logic to skip lines. index is the line index in the file.

Return true to stop the parsing, otherwise return false.

Listing 10.12.1 DoWhile Callback Sample

public bool DoWhile(long index, object source)
{
return false;
}

10. Customization

CSVReader automatically detects and loads the configured settings from POCO entity. At runtime, you can customize and tweak these parameters before CSV parsing. CSVReader exposes Configuration property, it is of ChoCSVRecordConfiguration object. Using this property, you can customize them.

Listing 10.1 Customizing CSVReader at run-time

class Program
{
static void Main(string[] args)
{
string csv = @"Id, Name
1, Carl
2, Mark
3,";
dynamic row = null;
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
)
{
parser.Configuration.ColumnCountStrict = true;
while ((row = parser.Read()) != null)
{
Console.WriteLine($"Id: {row.Id}");
Console.WriteLine($"Name: {row.Name}");
}
}
}
}

11. AsDataReader Helper Method

CSVReader exposes AsDataReader helper method to retrieve the CSV records in .NET datareader object. DataReader are fast-forward streams of data. This datareader can be used in few places like bulk coping data to database using SqlBulkCopy, loading disconnected DataTable, etc.

Listing 11.1 Reading as DataReader sample

static void AsDataReaderTest()
{
string csv = @"Id, Name
1, Carl
2, Mark
3,";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
)
{
IDataReader dr = parser.AsDataReader();
while (dr.Read())
{
Console.WriteLine("Id: {0}, Name: {1}", dr[0], dr[1]);
}
}
}

12. AsDataTable Helper Method

CSVReader exposes AsDataTable helper method to retrieve the CSV records in .NET DataTable object. It then can be persisted to disk, displayed in grid/controls or stored in memory like any other object.

Listing 12.1 Reading as DataTable sample

static void AsDataTableTest()
{
string csv = @"Id, Name
1, Carl
2, Mark
3,";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
)
{
IDataReader dr = parser.AsDataTable();
while (dr.Read())
{
Console.WriteLine("Id: {0}, Name: {1}", dr[0], dr[1]);
}
}
}

13. Using Dynamic Object

So far, the article explained about using CSVReader with POCO object. CSVReader also supports loading CSV file without POCO object. It leverages .NET dynamic feature. The sample below shows how to read CSV stream without POCO object.

If you have CSV file, you can parse and load the file with minimal/zero configuration. If the CSV file does not have header record line, the parser automatically names the columns as Column1, Column2, etc.

The sample below shows it:

Listing 13.1 Loading CSV file without header sample

class Program
{
static void Main(string[] args)
{
string csv = @"1, Carl
2, Mark
3,";
dynamic row = null;
using (var parser = ChoCSVReader.LoadText(csv))
{
while ((row = parser.Read()) != null)
{
Console.WriteLine($"Id: {row.Column1}");
Console.WriteLine($"Name: {row.Column2}");
}
}
}
}

If the CSV file has a header, you can state that in the configuration as HasHeaderRecord is true / use WithFirstLineHeader fluent API and parse the file as simple as below:

Listing 13.2 Loading CSV file with header sample

class Program
{
static void Main(string[] args)
{
string csv = @"Id, Name
1, Carl
2, Mark
3,";
dynamic row = null;
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
)
{
while ((row = parser.Read()) != null)
{
Console.WriteLine($"Id: {row.Id}");
Console.WriteLine($"Name: {row.Name}");
}
}
}
}

The above example automatically discovers the CSV columns from the header and parses the file.

You can override the default behavior of discovering columns automatically by adding field configurations manually and pass it to CSVReader for parsing file.

Sample shows how to do it:

Listing 13.3 Loading CSV file with configuration

class Program
{
static void Main(string[] args)
{
ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.CSVFileHeaderConfiguration.HasHeaderRecord = true;
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Id", 1));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));
dynamic row = null;
using (var parser = ChoCSVReader.LoadText(csv, config)
)
{
while ((row = parser.Read()) != null)
{
Console.WriteLine($"Id: {row.Id}");
Console.WriteLine($"Name: {row.Name}");
}
}
}
}

To completely turn off the auto column discovery, you will have to set ChoCSVRecordConfiguration.AutoDiscoverColumns to false.

13.1. DefaultValue

It is the value used and set to the property when the CSV value is empty or whitespace (controlled via IgnoreFieldValueMode).

Any POCO entity property can be specified with default value using System.ComponentModel.DefaultValueAttribute.

For dynamic object members or to override the declarative POCO object member’s default value specification, you can do so through configuration as shown below.

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Id", 1));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2) { DefaultValue = "NoName" })

13.2. ChoFallbackValue

It is the value used and set to the property when the CSV value failed to set. Fallback value only set when ErrorMode is either IgnoreAndContinue or ReportAndContinue.

Any POCO entity property can be specified with fallback value using ChoETL.ChoFallbackValueAttribute.

For dynamic object members or to override the declarative POCO object member’s fallback values, you can do through configuration as shown below.

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Id", 1));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2) { FallbackValue = "Tom" });

13.3. FieldType

In the type less dynamic object model, the reader reads individual field value and populate them to dynamic object members in ‘string’ value. If you want to enforce the type and do extra type checking during load, you can do so by declaring the field type at the field configuration.

Listing 8.5.1 Defining FieldType

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Id", 1) { FieldType = typeof(int) });
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));

In above sample shows to define field type as ‘int’ to ‘Id’ field. This instruct the CSVReader to parse and convert the value to integer before assigning to it. This extra type safety alleviate the incorrect values being loaded to object while parsing.

13.4. Type Converters

Most of the primitive types are automatically converted and set them to the properties by CSVReader. If the value of the CSV field can’t automatically be converted into the type of the property, you can specify a custom / built-in .NET converters to convert the value. These can be either IValueConverter or TypeConverter converters.

In the dynamic object model, you can specify these converters via configuration. See below example on the approach taken to specify type converters for CSV columns

Listing 13.4.1 Specifying TypeConverters

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.FileHeaderConfiguration.HasHeaderRecord = true;
config.ThrowAndStopOnMissingField = false;
ChoCSVRecordFieldConfiguration idConfig = new ChoCSVRecordFieldConfiguration("Id", 1);
idConfig.AddConverter(new IntConverter());
config.CSVRecordFieldConfigurations.Add(idConfig);
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name1", 2));

In above, we construct and attach the IntConverter to ‘Id’ field using AddConverter helper method in ChoCSVRecordFieldConfiguration object.

Likewise, if you want to remove any converter from it, you can use RemoveConverter on ChoCSVRecordFieldConfiguration object.

13.5. Validations

CSVReader leverages both System.ComponentModel.DataAnnotations and Validation Block validation attributes to specify validation rules for individual CSV fields. Refer to the MSDN site for a list of available DataAnnotations validation attributes.

Listing 13.5.1 Specifying Validations

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.FileHeaderConfiguration.HasHeaderRecord = true;
config.ThrowAndStopOnMissingField = false;
ChoCSVRecordFieldConfiguration idConfig = new ChoCSVRecordFieldConfiguration("Id", 1);
idConfig.Validators = new ValidationAttribute[] { new RangeAttribute(0, 100) };
config.CSVRecordFieldConfigurations.Add(idConfig);
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name1", 2));

In example above, we used Range validation attribute for Id property. CSVReader performs validation on them during load based on Configuration.ObjectValidationMode is set to ChoObjectValidationMode.MemberLevel or ChoObjectValidationMode.ObjectLevel.

PS: Self validation NOT supported in Dynamic object model

14. Working with sealed POCO object

If you already have existing sealed POCO object or the object is in 3rd party library, we can use them with CSVReader. All you need is the CSV file with header in it.

Listing 14.1 Exisiting sealed POCO Object

public sealed class ThirdPartyRec
{
public int Id
{
get;
set;
}
public string Name
{
get;
set;
}
}

Listing 14.2 Consuming CSV file

class Program
{
static void Main(string[] args)
{
string csv = @"Id, Name
1, Carl
2, Mark
3,";
dynamic row = null;
using (var parser = ChoCSVReader<ThirdPartyRec>.LoadText(csv)
.WithFirstLineHeader()
)
{
while ((row = parser.Read()) != null)
{
Console.WriteLine($"Id: {row.Id}");
Console.WriteLine($"Name: {row.Name}");
}
}
}
}

In this case, CSVReader reverse discover the CSV columns from the CSV file and load the data into POCO object. If the CSV file structure and POCO object matches, the load will success with populating all corresponding data to its properties. In case the property is missing for any CSV column, CSVReader silently ignores them and continue on with rest.

You can override this behavior by setting ChoCSVRecordConfiguration.ThrowAndStopOnMissingField property to false. In this case, the CSVReader will throw ChoMissingRecordFieldException exception if a property is missing for a CSV column.

Is there a way to extend the sealed third party object with CSV specification? Yes, Cinchoo provides model to extend them by creating metadata class with ChoMetadataRefTypeAttribute. Cinchoo auto discover it and load the specs from this special class.

[ChoMetadataRefType(typeof(ThirdPartyRec))]
public sealed class ThirdPartyRecMetaData
{
[ChoCSVRecordField(1, Name = "SeqNo")]
public int Id
{
get;
set;
}
[ChoCSVRecordField(2)]
public string Name
{
get;
set;
}
}

There is another way to inject MetaData object to Cinchoo framework as well.

ChoMetadataObjectCache.Default.Attach(typeof(ThirdPartyRec), new ThirdPartyRecMetaData());

15. Exceptions

CSVReader throws different types of exceptions in different situations.

  • ChoParserException — CSV file is bad and parser not able to recover.
  • ChoRecordConfigurationException — Any invalid configuration settings are specified, this exception will be raised.
  • ChoMissingRecordFieldException — A property is missing for a CSV column, this exception will be raised.

16. Tips

16.1. Multiline CSV column value

If CSV file contains column values with newline characters in it, ChoCSVReader can handle it by specifying Configuration.MayContainEOLInData = true.

Listing 16.1.1 Multiline column values in CSV file

Id,Name
1,"Tom
Cassawaw"
2,"Carl"
3,"Mark"

In above, the Id (1) has name in multiline with surrounded quotes. Sample below show on how to handle it.

Listing 16.1.2 Reading multiline column values in CSV file

static void IgnoreUnwantedLines()
{
using (var parser = new ChoCSVReader("Emp.csv").WithFirstLineHeader())
{
parser.Configuration.MayContainEOLInData = true;

foreach (var e in parser)
Console.WriteLine(e.Dump());
}
}

16.2. CSV column value with field separator

If CSV file contains column values with field separator (,) in it, ChoCSVReader can handle it with surrounded quotes.

Listing 16.2.1 CSV column value with separators

Id,Name
1,"Tom Cassawaw"
2,"Carl, Malcolm"
3,"Mark"

In above, the Id (2) has name with separator (,) in it. In order for ChoCSVReader recognize this situation, it must be surrounded by quotes.

16.3. CSV column value with single quotes

ChoCSVReader can read CSV column values with single quotes in it seamlessly. No surrounded quotes required.

Listing 16.3.1 CSV column value with single quotes

Id,Name
1,Tom Cassawaw
2,Carl'Malcolm
3,Mark

In above, the Id (2) has name with single quotes (‘) in it. ChoCSVReader recognize this situation, load these values successfully.

17. Using MetadataType Annotation

Cinchoo ETL works better with data annotation’s MetadataType model. It is way to attach MetaData class to data model class. In this associated class, you provide additional metadata information that is not in the data model. It roles is to add attribute to a class without having to modify this one. You can add this attribute that takes a single parameter to a class that will have all the attributes. This is useful when the POCO classes are auto generated (by Entity Framework, MVC etc) by an automatic tools. This is why second class come into play. You can add new stuffs without touching the generated file. Also this promotes modularization by separating the concerns into multiple classes.

For more information about it, please search in MSDN.

Listing 17.1 MetadataType annotation usage sample

[MetadataType(typeof(EmployeeRecMeta))]
public class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
}
[ChoCSVFileHeader]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.ThrowAndStop,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false,
ObjectValidationMode = ChoObjectValidationMode.MemberLevel)]
public class EmployeeRecMeta : IChoNotifyRecordRead, IChoValidatable
{
[ChoCSVRecordField(1, FieldName = "id", ErrorMode = ChoErrorMode.ReportAndContinue )]
[ChoTypeConverter(typeof(IntConverter))]
[Range(1, 1, ErrorMessage = "Id must be > 0.")]
[ChoFallbackValue(1)]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName = "Name", QuoteField = true)]
[StringLength(1)]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }

public bool AfterRecordLoad(object target, int index, object source)
{
throw new NotImplementedException();
}

public bool BeforeRecordLoad(object target, int index, ref object source)
{
throw new NotImplementedException();
}

public bool RecordFieldLoadError(object target, int index, string propName, object value, Exception ex)
{
throw new NotImplementedException();
}

public bool TryValidate(object target, ICollection<ValidationResult> validationResults)
{
return true;
}

public bool TryValidateFor(object target, string memberName, ICollection<ValidationResult> validationResults)
{
return true;
}

public void Validate(object target)
{
}

public void ValidateFor(object target, string memberName)
{
}
}

In above EmployeeRec is the data class. Contains only domain specific properties and operations. Mark it very simple class to look at it.

We separate the validation, callback mechanism, configuration etc into metadata type class, EmployeeRecMeta.

18. Configuration Choices

If the POCO entity class is an auto-generated class or exposed via library or it is a sealed class, it limits you to attach CSV schema definition to it declaratively. In such case, you can choose one of the options below to specify CSV layout configuration

  • Manual Configuration
  • Auto Map Configuration
  • Attaching MetadataType class

I’m going to show you how to configure the below POCO entity class on each approach

Listing 18.1 Sealed POCO entity class

public sealed class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
}

18.1. Manual Configuration

Define a brand new configuration object from scratch and add all the necessary CSV fields to the ChoCSVConfiguration.CSVRecordFieldConfigurations collection property. This option gives you greater flexibility to control the configuration of CSV parsing. But the downside is that possibility of making mistakes and hard to manage them if the CSV file layout is large,

Listing 18.1.1 Manual Configuration

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();config.FileHeaderConfiguration.HasHeaderRecord = true;
config.ThrowAndStopOnMissingField = true;
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Id", 1));
config.CSVRecordFieldConfigurations.Add(new ChoCSVRecordFieldConfiguration("Name", 2));
foreach (var e in new ChoCSVReader<EmployeeRec>("Emp.csv", config))
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

Above configuration approach suitable for both POCO as well as dynamic model approach. Below approach more type safe approach if you parse the CSV file using POCO model

var config = new ChoCSVRecordConfiguration<EmployeeRec>()
.WithFirstLineHeader()
.Configure(c => c.ThrowAndStopOnMissingField = true)
.Map(f => f.Id, 1)
.Map(f => f.Name, 2);
foreach (var e in new ChoCSVReader<EmployeeRec>("Emp.csv", config))
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

18.2. Auto Map Configuration

This is an alternative approach and very less error-prone method to auto map the CSV columns for the POCO entity class. This approach helpfull if the POCO model objects are sealed / exposed via thrid party library / maintained in separate repository not under your control, you cam define mapping class and register them with parser to define the field mapping and configuration.

First define a schema class for EmployeeRec POCO entity class as below

Listing 18.2.1 Auto Map class

public class EmployeeRecMap
{
[ChoCSVRecordField(1, FieldName = "id")]
public int Id { get; set; }

[ChoCSVRecordField(2, FieldName = "Name")]
public string Name { get; set; }
}

Then you can use it to auto map CSV columns by using ChoCSVRecordConfiguration.MapRecordFields method

Listing 18.2.2 Using Auto Map configuration

ChoCSVRecordConfiguration config = new ChoCSVRecordConfiguration();
config.MapRecordFields<EmployeeRecMap>();
foreach (var e in new ChoCSVReader<EmployeeRec>("Emp.csv", config).WithFirstLineHeader())
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

18.3. Attaching MetadataType class

This is one another approach to attach MetadataType class for POCO entity object. Previous approach simple care for auto mapping of CSV columns only. Other configuration properties like property converters, parser parameters, default/fallback values etc. are not considered.

This model, accounts for everything by defining MetadataType class and specifying the CSV configuration parameters declaratively. This is useful when your POCO entity is sealed and not partial class. Also it is one of favorable and less error-prone approach to configure CSV parsing of POCO entity.

Listing 18.3.1 Define MetadataType class

[ChoCSVFileHeader()]
[ChoCSVRecordObject(Encoding = "Encoding.UTF32", ErrorMode = ChoErrorMode.ReportAndContinue,
IgnoreFieldValueMode = ChoIgnoreFieldValueMode.All, ThrowAndStopOnMissingField = false,
ObjectValidationMode = ChoObjectValidationMode.MemberLevel)]
public class EmployeeRecMeta : IChoNotifyRecordRead, IChoValidatable
{
[ChoCSVRecordField(1, FieldName = "id", ErrorMode = ChoErrorMode.ReportAndContinue )]
[ChoTypeConverter(typeof(IntConverter))]
[Range(1, 1, ErrorMessage = "Id must be > 0.")]
public int Id { get; set; }
[ChoCSVRecordField(2, FieldName = "Name", QuoteField = true)]
[StringLength(1)]
[DefaultValue("ZZZ")]
[ChoFallbackValue("XXX")]
public string Name { get; set; }

public bool AfterRecordLoad(object target, int index, object source)
{
throw new NotImplementedException();
}

public bool BeforeRecordLoad(object target, int index, ref object source)
{
throw new NotImplementedException();
}

public bool RecordFieldLoadError(object target, int index, string propName, object value, Exception ex)
{
return true;
}

public bool TryValidate(object target, ICollection<ValidationResult> validationResults)
{
return true;
}

public bool TryValidateFor(object target, string memberName, ICollection<ValidationResult> validationResults)
{
return true;
}

public void Validate(object target)
{
}

public void ValidateFor(object target, string memberName)
{
}
}

Listing 18.3.2 Attaching MetadataType class

//Attach metadata 
ChoMetadataObjectCache.Default.Attach<EmployeeRec>(new EmployeeRecMeta());
foreach (var e in new ChoCSVReader<EmployeeRec>("Emp.csv").WithFirstLineHeader())
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

19. LoadText Helper Method

This is little nifty helper method to parse and load CSV text string into objects.

Listing 19.1 Using LoadText method

string txt = "Id, Name\r\n1, Mark";
foreach (dynamic e in ChoCSVReader.LoadText(txt).WithFirstLineHeader())
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

20. Advanced Topics

20.1. Override Converters Format Specs

Cinchoo ETL automatically parses and converts each CSV column values to the corresponding CSV column’s underlying data type seamlessly. Most of the basic .NET types are handled automatically without any setup needed.

This is achieved through two key settings in the ETL system

  1. ChoCSVRecordConfiguration.CultureInfo — Represents information about a specific culture including the names of the culture, the writing system, and the calendar used, as well as access to culture-specific objects that provide information for common operations, such as formatting dates and sorting strings. Default is ‘en-US’.
  2. ChoTypeConverterFormatSpec — It is global format specifier class holds all the intrinsic .NET types formatting specs.

In this section, I’m going to talk about changing the default format specs for each .NET intrinsic data types according to parsing needs.

ChoTypeConverterFormatSpec is singleton class, the instance is exposed via ‘Instance’ static member. It is thread local, means that there will be separate instance copy kept on each thread.

There are 2 sets of format specs members given to each intrinsic type, one for loading and another one for writing the value, except for Boolean, Enum, DataTime types. These types have only one member for both loading and writing operations.

Specifying each intrinsic data type format specs through ChoTypeConverterFormatSpec will impact system wide. ie. By setting ChoTypeConverterFormatSpec.IntNumberStyle = NumberStyles.AllowParentheses, will impact all integer members of CSV objects to allow parentheses. If you want to override this behavior and take control of specific CSV data member to handle its own unique parsing of CSV value from global system wide setting, it can be done by specifying TypeConverter at the CSV field member level. Refer section 13.4 for more information.

NumberStyles (optional) used for loading values from CSV stream and Format string are used for writing values to CSV stream.

In this article I’ll brief about using NumberStyles for loading CSV data from stream. These values are optional. It determines the styles permitted for each type during parsing of CSV file. System automatically figures out the way to parse and load the values from underlying Culture. In odd situation, you may want to override and set the styles the way you want in order to successfully load the file. Refer the MSDN for more about NumberStyles and its values.

Listing 20.1.1 ChoTypeConverterFormatSpec Members

public class ChoTypeConverterFormatSpec
{
public static readonly ThreadLocal<ChoTypeConverterFormatSpec> Instance = new ThreadLocal<ChoTypeConverterFormatSpec>(() => new ChoTypeConverterFormatSpec());

public string DateTimeFormat { get; set; }
public ChoBooleanFormatSpec BooleanFormat { get; set; }
public ChoEnumFormatSpec EnumFormat { get; set; }

public NumberStyles? CurrencyNumberStyle { get; set; }
public string CurrencyFormat { get; set; }

public NumberStyles? BigIntegerNumberStyle { get; set; }
public string BigIntegerFormat { get; set; }

public NumberStyles? ByteNumberStyle { get; set; }
public string ByteFormat { get; set; }

public NumberStyles? SByteNumberStyle { get; set; }
public string SByteFormat { get; set; }

public NumberStyles? DecimalNumberStyle { get; set; }
public string DecimalFormat { get; set; }

public NumberStyles? DoubleNumberStyle { get; set; }
public string DoubleFormat { get; set; }

public NumberStyles? FloatNumberStyle { get; set; }
public string FloatFormat { get; set; }

public string IntFormat { get; set; }
public NumberStyles? IntNumberStyle { get; set; }

public string UIntFormat { get; set; }
public NumberStyles? UIntNumberStyle { get; set; }

public NumberStyles? LongNumberStyle { get; set; }
public string LongFormat { get; set; }

public NumberStyles? ULongNumberStyle { get; set; }
public string ULongFormat { get; set; }

public NumberStyles? ShortNumberStyle { get; set; }
public string ShortFormat { get; set; }

public NumberStyles? UShortNumberStyle { get; set; }
public string UShortFormat { get; set; }
}

Sample below shows how to load CSV data stream having ‘se-SE’ (Swedish) culture specific data using CSVReader. Also the input feed comes with ‘EmployeeNo’ values containing parentheses. In order to make the load successful, we have to set the ChoTypeConverterFormatSpec.IntNumberStyle to NumberStyles.AllowParenthesis.

Listing 20.1.2 Using ChoTypeConverterFormatSpec in code

static void UsingFormatSpecs()
{
string csv = @"Id,Name,Salary,JoinedDate,EmployeeNo
1,Carl,12.345679 kr,2017-10-10,5
2,Mark,50000 kr,2001-10-01,6
3,Tom,150000 kr,1996-01-25,9";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", fieldType: typeof(float))
.WithField("JoinedDate", fieldType: typeof(DateTime))
.WithField("EmployeeNo", fieldType: typeof(int))
.Configure(c => c.Culture = new System.Globalization.CultureInfo("se-SE"))
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

20.2. Currency Support

Cinchoo ETL provides ChoCurrency object to read and write currency values in CSV files. ChoCurrency is a wrapper class to hold the currency value in decimal type along with support of serializing them in text format during CSV load.

Listing 20.2.1 Using Currency members in dynamic model

static void CurrencyDynamicTest()
{
string csv = @"Id,Name,Salary,JoinedDate,EmployeeNo
1,Carl,12.345679 kr,2017-10-10,5
2,Mark,50000 kr,2001-10-01,6
3,Tom,150000 kr,1996-01-25,9";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", fieldType: typeof(ChoCurrency))
.WithField("JoinedDate", fieldType: typeof(DateTime))
.WithField("EmployeeNo", fieldType: typeof(int))
.Configure(c => c.Culture = new System.Globalization.CultureInfo("se-SE"))
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

Sample above shows how to load currency values using dynamic object model. By default, all the members of dynamic object are treated as string type, unless specified explicitly via ChoCSVFieldConfiguration.FieldType. By specifying the field type as ChoCurrency to the ‘Sa;lary’ CSV field, CSVReader loads them as currency object.

PS: The format of the currency value is figured by CSVReader through ChoRecordConfiguration.Culture and ChoTypeConverterFormatSpec.CurrencyNumberStyle.

Sample below shows how to use ChoCurrency CSV field in POCO entity class.

Listing 20.2.2 Using Currency members in POCO model

public class EmployeeRecWithCurrency
{
public int Id { get; set; }
public string Name { get; set; }
public ChoCurrency Salary { get; set; }
}

static void CurrencyTest()
{
string csv = @"Id,Name,Salary
1,Carl,$12.345679
2,Mark,$50000
3,Tom,$150000";
using (var parser = ChoCSVReader<EmployeeRecWithCurrency>.LoadText(csv)
.WithFirstLineHeader()
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

20.3. Enum Support

Cinchoo ETL implicitly handles parsing of enum column values from CSV files. If you want to fine control the parsing of these values, you can specify them globally via ChoTypeConverterFormatSpec.EnumFormat. Default is ChoEnumFormatSpec.Value

FYI, changing this value will impact system wide.

There are 3 possible values can be used

  1. ChoEnumFormatSpec.Value — Enum value is used for parsing.
  2. ChoEnumFormatSpec.Name — Enum key name is used for parsing.
  3. ChoEnumFormatSpec.Description — If each enum key is decorated with DescriptionAttribute, its value will be use for parsing.

Listing 20.3.1 Specifying Enum format specs during parsing

public enum EmployeeType
{
[Description("Full Time Employee")]
Permanent = 0,
[Description("Temporary Employee")]
Temporary = 1,
[Description("Contract Employee")]
Contract = 2
}
static void EnumTest()
{
ChoTypeConverterFormatSpec.Instance.EnumFormat = ChoEnumFormatSpec.Description;

string csv = @"Id,Name,Salary,JoinedDate,EmployeeType
1,Carl,12345679,01/10/2016,Full Time Employee
2,Mark,50000,10/01/1995,Temporary Employee
3,Tom,150000,01/01/1940,Contract Employee";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", fieldType: typeof(float))
.WithField("JoinedDate", fieldType: typeof(DateTime))
.WithField("EmployeeType", fieldType: typeof(EmployeeType))
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

20.4. Boolean Support

Cinchoo ETL implicitly handles parsing of boolean CSV column values from CSV files. If you want to fine control the parsing of these values, you can specify them globally via ChoTypeConverterFormatSpec.BooleanFormat. Default value is ChoBooleanFormatSpec.ZeroOrOne

FYI, changing this value will impact system wide.

There are 4 possible values can be used

  1. ChoBooleanFormatSpec.ZeroOrOne — ‘0’ for false. ‘1’ for true.
  2. ChoBooleanFormatSpec.YOrN — ‘Y’ for true, ’N’ for false.
  3. ChoBooleanFormatSpec.TrueOrFalse — ‘True’ for true, ‘False’ for false.
  4. ChoBooleanFormatSpec.YesOrNo — ‘Yes’ for true, ‘No’ for false.

Listing 20.4.1 Specifying boolean format specs during parsing

static void BoolTest()
{
ChoTypeConverterFormatSpec.Instance.BooleanFormat = ChoBooleanFormatSpec.ZeroOrOne;

string csv = @"Id,Name,Salary,JoinedDate,Active
1,Carl,12345679,01/10/2016,0
2,Mark,50000,10/01/1995,1
3,Tom,150000,01/01/1940,1";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", fieldType: typeof(float))
.WithField("JoinedDate", fieldType: typeof(DateTime))
.WithField("Active", fieldType: typeof(bool))
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

20.5. DateTime Support

Cinchoo ETL implicitly handles parsing of datetime CSV column values from CSV files using system Culture or custom set culture. If you want to fine control the parsing of these values, you can specify them globally via ChoTypeConverterFormatSpec.DateTimeFormat. Default value is ‘d’.

FYI, changing this value will impact system wide.

You can use any valid standard or custom datetime .NET format specification to parse the datetime CSV values from the file.

Listing 20.5.1 Specifying datetime format specs during parsing

static void DateTimeTest()
{
ChoTypeConverterFormatSpec.Instance.DateTimeFormat = "MMM dd, yyyy";
ChoTypeConverterFormatSpec.Instance.BooleanFormat = ChoBooleanFormatSpec.ZeroOrOne;
string csv = @"Id,Name,Salary,JoinedDate,Active
1,Carl,12345679,""Jan 01, 2011"",0
2,Mark,50000,""Sep 23, 1995"",1
3,Tom,150000,""Apr 10, 1999"",1";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", fieldType: typeof(float))
.WithField("JoinedDate", fieldType: typeof(DateTime))
.WithField("Active", fieldType: typeof(bool))
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

Sample above shows how to parse custom datetime CSV values from CSV file.

Note: As the datetime values contains CSV separator, it is given with double quotes to pass the parsing.

21. Fluent API

CSVReader exposes few frequent to use configuration parameters via fluent API methods. This will make the programming of parsing of CSV files quicker.

21.1 WithDelimiter

This API method sets the CSV field separator on CSVReader.

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithDelimiter(",")
.WithFirstLineHeader()
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

21.2. WithFirstLineHeader

This API method flags the CSV file contains first row as header or not. Optional bool parameter specifies the first row header or not. Default is true.

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

21.3. WithFields

This API method specifies the list of CSV fields to be considered for parsing and loading. Other fields in the CSV file will be discarded. This call re-initializes with the specified columns.

In dynamic object model, all the CSV columns will be created and parsed as string type.

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithFields("Id", "Name")
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

21.4. WithField

This API method used to add CSV column with specific date type. This method helpful in dynamic object model, by specifying each and individual CSV column with appropriate datatype.

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", typeof(float))
)
{
foreach (var rec in parser)
{
Console.WriteLine(rec.Dump());
}
}
}

In POCO model, you can opt-in the CSV columns using type safe WithField API call

For a POCO class

public class EmployeeRec
{
public int Id
{
get;
set;
}
public string Name
{
get;
set;
}
public double Salary
{
get;
set;
}
}

You can opt-in Id, Name fields as below

foreach (var e in new ChoCSVReader<EmployeeRec>("Emp.csv")
.WithFirstLineHeader()
.WithField(c => c.Id)
.WithField(c => c.Name)
)
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

21.5. QuoteAllFields

This API method used to specify whether all fields are to be surrounded by quotes or not.

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.QuoteAllFields()
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.6. ColumnCountStrict

This API method used to set the CSVReader to perform column count check before loading each line in CSV file.

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.ColumnCountStrict()
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.6. ColumnOrderStrict

This API method used to set the CSVReader to perform column orderness check before loading each line in CSV file. If there is any order mis-match found in any line, an error will be reported. This option is effective only if the CSV file contains first line as header. So it must be combined with WithFirstLineHeader().

static void QuickDynamicTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.ColumnOrderStrict()
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.8. NotifyAfter

This API method used to define the number of rows to be processed before generating a notification event. This property is designed for user interface components that illustrate the CSV loading progress. Notification are sent to subscribers who subscribed to RowsLoaded event.

static void NotifyAfterTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.NotifyAfter(1000)
)
{
parser.RowsLoaded += (o, e) => Console.WriteLine(e.RowsLoaded);
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.9. Configure

This API method used to configure all configuration parameters which are not exposed via fluent API.

static void ConfigureTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.Configure(c => c.ErrorMode = ChoErrorMode.ThrowAndStop)
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.10. Setup

This API method used to setup the reader’s parameters / events via fluent API.

static void SetupTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.Setup(r => r.BeforeRecordLoad += (o, e) =>
{
if (e.Source.CastTo<string>().StartsWith("//"))
e.Skip = true;
}
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.11. IgnoreHeader

This API method used to simply ignore the CSV header line from the file. In this case, no field name crosss checking will be performed. In the dynamic mode, all column names will be Column1, Column2,..

static void IgnoreHeaderTest()
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.IgnoreHeader()
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Column1: {0}", rec.Column1));
Console.WriteLine(String.Format("Column2: {0}", rec.Column2));
Console.WriteLine(String.Format("Column3: {0}", rec.Column3));
}
}
}

21.12. WithEOLDelimiter

This API method let you set non standard end of line (EOL) character for parsing CSV file.

static void EOLDelimiterTest() 
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithEOLDelimiter(Environment.NewLine)
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

21.13. WithHeaderLineAt

If your CSV file comes with header line apprears in different line, then you can use this API method to set the header line number.

using (var parser = new ChoCSVReader("emp.csv").WithHeaderLineAt(10))
{
foreach (var t in parser)
{
}
}

21.14. WithMaxScanRows

When your CSV files parsed in dynamic model, all field values are treated as string type. ChoCSVReader comes with auto detecting capability of finding field value types by using WithMaxScanRows method. You can instruct the reader to scan some definite number of rows to figure out the field values types automatically.

static void AutoDetectFieldTypes() 
{
string csv = @"Id,Name,Salary
1,Carl,10000
2,Mark,5000
3,Tom,2000";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithMaxScanRows(2)
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

22. FAQ

22.1. I want to read file with headers

You can use WithFirstLineHeader() fluent API method as below

foreach (dynamic e in new ChoCSVReader("Emp.csv").WithFirstLineHeader())
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

Or use Configuration.FirstLineHeader member

foreach (dynamic e in new ChoCSVReader("Emp.csv").WithFirstLineHeader())
{
parser.Configuration.FileHeaderConfiguration.HasHeaderRecord = true;
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}

22.1. File has lines I want to skip them from loading

You can subscribe to parser’s BeforeRecordLoad event to observe the lines and ignore unwanted lines as below

using (var parser = new ChoCSVReader("Emp.csv").WithFirstLineHeader())
{
parser.BeforeRecordLoad += (o, e) =>
{
if (e.Source != null)
{
e.Skip = ((string)e.Source).StartsWith("_");
}
};
foreach (var e in parser)
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}
}

22.2. Not all characters are read from data file

CSVReader smart enough to determine the encoding of the CSV file automatically. In rare cases, you may want to specify the encoding explicitly to CSVReader to read out all the characters from the CSV file.

Sample below shows how to specify the encoding to CSVReader configuration object to let the reader handles the opening of the file with passed encoding value.

using (var parser = new ChoCSVReader("Emp.csv").WithFirstLineHeader()) 
{
parser.Configuration.Encoding = Encoding.BigEndianUnicode;
foreach (var e in parser)
{
Console.WriteLine(String.Format("Id: {0}", e.Id));
Console.WriteLine(String.Format("Name: {0}", e.Name));
}
}

22.3. How to handle multiline records

CSVReader can handle multiline records in data file. You can turn on this option via Configuration.MayContainEOLInData option.

Sample below shows how to read such file

using (var parser = new ChoCSVReader("MultiLineValue.csv").WithFirstLineHeader())
{
parser.Configuration.MayContainEOLInData = true;

foreach (var e in parser)
Console.WriteLine(e.Dump());
}

22.4. How to handle errors and log them

CSVReader exposes callback machanism by which you can subscribe to the events and handle odd situation gracefully. Sample below shows how to handle field level errors and log them to custom log object

using (var parser = new ChoCSVReader<EmployeeRec>("empwithsalary.csv").WithFirstLineHeader())
{
parser.RecordFieldLoadError += (o, e) =>
{
//Log the error message to log object
Console.Write(e.Exception.Message);
//Set the handled flag as true to continue loading of CSV file
e.Handled = true;
};
foreach (var i in parser)
Console.WriteLine(i.Dump());
}

In above, we subscribe to RecordFieldLoadError event and capture any errors in the custom log object.

22.5. How to handle column headers having spaces or special characters in them?

CSVReader can handle this situation gracefully, load the CSV file without any issues. When you use dynamic parser, the column names with special characters are replaced with _ character.

ex.

COMPANY NAME -> COMPANY_NAME

COMPANY TYPE -> COMPANY_TYPE

FIRST NAME$ -> FIRST_NAME_

COMPANY NAME, Email, Job Title,COMPANY TYPE, CITY, FIRST NAME$, LAST NAME
"Bbc Worldwide Labs, Bounce Republic Ltd",hidden @hidden.com,"Broadcaster, Voice Over & Founder Of Passion Pods", Broadcast Media, London, Emily, Chiswell

Loading file using dynamic parser, the field names are normalized automtically with _ character as below

foreach (dynamic rec in new ChoCSVReader("Emp.csv").WithFirstLineHeader())
{
Console.WriteLine(rec.COMPANY_NAME);
Console.WriteLine(rec.COMPANY_TYPE);
Console.WriteLine(rec.FIRST_NAME_);
}

UPDATE:

Now you can access members by original names through indexers as shown below

foreach (dynamic rec in new ChoCSVReader("Emp.csv").WithFirstLineHeader())
{
Console.WriteLine(rec["COMPANY_NAME");
Console.WriteLine(rec["COMPANY TYPE");
Console.WriteLine(rec["FIRST NAME$"]);
}

22.6. Failed to format DateTime during load?

CSVReader uses default culture as en-US. If the data file contains datetimes in differenct culture, CSVReader may failed to load those values during parsing. This can be handled by settings culture to the matching data file culture. Sample below shows how to load data file containing datetimes in en-GB culture.

CSV File (Emp.csv):

Id,Date,Account,Amount,Subcategory,Memo
1,09/05/2017,XXX XXXXXX,-29.00,FT,Sample string
2,09/05/2017,XXX XXXXXX,-20.00,FT,Sample string
3,25/05/2017,XXX XXXXXX,-6.30,PAYMENT,Sample string

POCO class:

class Transaction
{
public string Id { get; set; }
public DateTime Date { get; set; }
public string Account { get; set; }
public decimal Amount { get; set; }
public string Subcategory { get; set; }
public string Memo { get; set; }
}

Parsing Code:

using (var parser = new ChoCSVReader<Transaction>("emp.csv").WithFirstLineHeader())
{
csv.Configuration.Culture = CultureInfo.GetCultureInfo("en-GB");
foreach (var t in parser)
Console.WriteLine(string.Format("{0:dd-MMM-yyyy} {1} {2,6} {3,-7} {4}", t.Date, t.Account, t.Amount, t.Subcategory, t.Memo));
}

22.7. How to handle duplicate CSV columns?

CSVReader can’t handle duplicate CSV columns out of the box. If found, it will error out and stop the parsing of the CSV file. But there is a workaround to handle such situation.

CSV File (Emp.csv):

Id,Date,Account,Amount,Subcategory,Memo,Memo
1,09/05/2017,XXX XXXXXX,-29.00,FT,Memo1,DupMemo1
2,09/05/2017,XXX XXXXXX,-20.00,FT,Memo2,DupMemo2
3,25/05/2017,XXX XXXXXX,-6.30,PAYMENT,Memo3,DupMemo2

In above, the file has duplicate ‘Memo’ csv column. In order to load it using dynamic mode, you should tell the CSVReader to ignore the header line using WithFirstLineHeader() overload as below

using (var parser = new ChoCSVReader("emp.csv").WithFirstLineHeader(true))
{
foreach (var t in parser)
{
Console.WriteLine(t[1]);
Console.WriteLine(t["Column1"]);
}
}

In above, you have choices to access the CSV columns by indexes or by system generated names Column1, Column2 etc.

Alternatively, you can provide column name overrides via configuration as below to access them by name

using (var parser = new ChoCSVReader("emp.csv").WithFirstLineHeader(true)
.WithColumns("Id","Date","Account","Amount","Subcategory","Memo","Memo1"))
{
foreach (var t in parser)
{
Console.WriteLine(t.Memo);
Console.WriteLine(t.Memo1);
}
}

POCO class:

When using POCO class for parsing, define the members with CSV column by position using ChoCSVRecordFieldAttribute. In below, we defined Memo1 object member to map to duplicate Memo column.

class Transaction
{
[ChoCSVRecordField(1)]
public string Id { get; set; }
[ChoCSVRecordField(2)]
public DateTime Date { get; set; }
[ChoCSVRecordField(3)]
public string Account { get; set; }
[ChoCSVRecordField(4)]
public decimal Amount { get; set; }
[ChoCSVRecordField(5)]
public string Subcategory { get; set; }
[ChoCSVRecordField(6)]
public string Memo { get; set; }
[ChoCSVRecordField(7)]
public string Memo1 { get; set; }
}

Then use this POCO class to ChoCSVReader to load the file as below

using (var parser = new ChoCSVReader<Tranaction>("emp.csv").WithFirstLineHeader(true))
{
foreach (var t in parser)
{
Console.WriteLine(t.Memo);
Console.WriteLine(t.Memo1);
}
}

22.8. What if CSV header is found other than first line?

Rarely some CSV files may comes with header line at some place other than first line. If the headerline is always comes at fixed line, this sample shows you how to parse the file using WithHeaderLineAt() method.

CSV File (Emp.csv):

# This file is produced by XYZ systems
# Id - id column
# Date - Date of the account opened
Id,Date,Account,Amount,Subcategory,Memo,Memo1
1,09/05/2017,XXX XXXXXX,-29.00,FT,Memo1,DupMemo1
2,09/05/2017,XXX XXXXXX,-20.00,FT,Memo2,DupMemo2
3,25/05/2017,XXX XXXXXX,-6.30,PAYMENT,Memo3,DupMemo2

In above, the CSV file has the header at line 4. (PS. Index starts with 1). Here is how you can load them with header is present at line 4.

using (var parser = new ChoCSVReader("emp.csv").WithHeaderLineAt(4))
{
foreach (var t in parser)
{
Console.WriteLine(t.Id);
Console.WriteLine(t.Date);
}
}

What if the CSV file header is comes at random line each time when you receive the file, but preceded by it with only comment lines? This can be handled by standard mechanism as shown below

using (var parser = new ChoCSVReader("emp.csv")
.Configure(c => c.Comments = new string[] { "#" })
.WithFirstLineHeader()
)
{
foreach (var t in parser)
{
Console.WriteLine(t.Id);
Console.WriteLine(t.Date);
}
}

22.9. How to turn off Records loaded or other trace messages?

You can turn off or control the Cinchoo ETL trace messages by setting ChoETLBootstrap.TraceLevel property at the application startup

ChoETLFrxBootstrap.TraceLevel = System.Diagnostics.TraceLevel.Off;

Possible values are

System.Diagnostics.TraceLevel.Off
System.Diagnostics.TraceLevel.Info;
System.Diagnostics.TraceLevel.Error;
System.Diagnostics.TraceLevel.Verbose;

22.10. How to specify default values to CSV columns?

Sample shows how to specify defaults to CSV columns in dynamic model

using (var cr = new ChoCSVReader("sample.csv")
.WithFirstLineHeader()
.WithField("firstName", defaultValue)
.WithField("lastName")
.WithField("salary", defaultValue: 100, fieldType: typeof(double))
)
)
{
foreach (var x in cr)
Console.WriteLine(ChoUtility.Dump(x));
}

In above sample, the default value is specified to ‘Salary’ CSV colum as 100 using WithField fluent API.

In POCO model, the default values can be specified using System.ComponentModel.DefaultValueAttribute as shown below

public class Employee
{
public string FirstName { get; set; }
public string LastName { get; set; }
[DefaultValue(100)]
public double Salary { get; set; }
}

22.11. Does Cinchoo ETL support hierarchical object support?

Yes, it does. If your CSV file comes with header containing CSV column names are specified with hierarchical separator, Cinchoo ETL automatically construct them into the nested object.

PS: This feature is currently supported in dynamic object model only.

Nested CSV:

id,name,category/id,category/name,category/subcategory/id,category/subcategory/name,description
1,Test123,15,Cat123,10,SubCat123,Desc123

The above sample CSV file comes with nested column names, category/name, category/subcategory/id etc. The column name separater is ‘/’. In order to treat them as nested columns and load them as nested object, you must specify the ‘NestedColumnSepatator’ property of ChoCSVReader engine. Sample below shows how to do it

using (var csv = new ChoCSVReader("nested.csv").WithFirstLineHeader()
.Configure(c => c.NestedColumnSeparator = '/')
)
{
foreach (var x in csv)
Console.WriteLine(x.DumpAsJson());
}

22.12. Does the Cinchoo driver auto discover columns datatypes?

Yes, it does. The CSV configuration exposes MaxScanRows property to specify the numbder of rows to be scanned before deciding the column data types. By default it is 0. Cinchoo ETL driver apply its very own algorithm to determine the column types. It does not help always. This is more effective only when all the cell values are exists in the file.

using (var csv = new ChoCSVReader("sample.csv").WithFirstLineHeader()
.Configure(c => c.MaxScanRows = 10)
)
{
foreach (var x in csv)
Console.WriteLine(x.DumpAsJson());
}

22.13 How to comment or ignore line in CSV file?

Couple of ways you can ignore lines.

Using comment chararacter

using (var csv = new ChoCSVReader("sample.csv").WithFirstLineHeader()
.Configure(c => c.Comment = "#")
)
{
foreach (var x in csv)
Console.WriteLine(x.DumpAsJson());
}

By registering to ‘BeforeRecordLoad event handler to CSVReader engine

foreach (dynamic rec in new ChoCSVReader("emp.csv")
.Setup(r => r.BeforeRecordLoad += (o, e) =>
{
if (e.Source != null)
{
e.Skip = ((string)e.Source).StartsWith("#");
}
})
)
{
Console.WriteLine(rec.Id);
}

22.14 How to bulk copy CSV file to SqlServer (any db)?

SqlBulkCopy lets you efficiently bulk load data to SQLServer. With Cinchoo ETL, you can load large CSV file to SQLServer quickly. Sample below shows how you can do it.

For a sample CSV:

CustId,Name,Balance,AddedDate
1732,Tom Perez,435.00,05/11/2002
5541,Pedro Gomez,12342.30,06/02/2004
1122,Mark Politti,0.00,01/02/2000
1924,Pablo Ramirez,3321.30,11/24/2002

Define database table matching above CSV file format

IF OBJECT_ID ('dbo.Customers') IS NOT NULL
DROP TABLE dbo.Customers
GO
CREATE TABLE dbo.Customers
(
CustId INT NOT NULL,
Name NVARCHAR (max) NULL,
Balance DECIMAL (18, 2) NOT NULL,
AddedDate DATETIME NOT NULL
)
GO

Here is how you can upload the file to sqlserver

string connectionstring = 
@"Data Source=(localdb)\v11.0;Initial Catalog=TestDb;Integrated Security=True";
using (SqlBulkCopy bcp = new SqlBulkCopy(connectionstring))
{
using (var dr = new ChoCSVReader("Cust.csv").WithFirstLineHeader()
.WithField("CustId", fieldType: typeof(int))
.WithField("Name", fieldType: typeof(string))
.WithField("Balance", fieldType: typeof(double))
.WithField("AddedDate", fieldType: typeof(DateTime))
.AsDataReader())
{
bcp.DestinationTableName = "dbo.Customers";
bcp.EnableStreaming = true;

bcp.BatchSize = 10000;
bcp.BulkCopyTimeout = 0;
bcp.NotifyAfter = 10;
bcp.SqlRowsCopied += delegate (object sender, SqlRowsCopiedEventArgs e)
{
Console.WriteLine(e.RowsCopied.ToString("#,##0") + " rows copied.");
};
bcp.WriteToServer(dr);
}
}

22.15. What is the best way to get column names from CSV file?

The header is stored in the CSVReader.Context object. In order to get the headers, you must read the first record. Sample show how to get the columns names of the CSV file

Id, Name
1, Tom
2, Mark

Sample code shows how to get the column names

using (var p = new ChoCSVReader("emp.csv").WithFirstLineHeader())
{
p.Read();
Console.WriteLine(String.Join(", ", p.Context.Headers));
}

22.16. Is there a way to parse CSV, mapping by varied column names?

Lets say you have multiple CSV files with varying column names, wanted to parse it using parser with same POCO object. Cinchoo ETL offers a ways to setup this scenario by specifying alternative column names for each field.

For a CSV files

Emp1.csv

Num, FirstName
1, Tom
2, Mark

Emp2.csv

Identity, LastName
1, Tom
2, Mark

In order to parse these 2 files using same POCO object, you must setup as below

public class Employee
{
[ChoCSVRecordField(1, AltFieldNames = "Num, Identity")]
public int Id { get; set; }

[ChoCSVRecordField(1, AltFieldNames = "FirstName, LastName")]
public int Name { get; set; }
}

Once you have the columns setup with alternative names, you can use the same POCO to parse the above 2 files. Sample below shows how

using (var p = new ChoCSVReader<Employee>("emp1.csv").WithFirstLineHeader())
{
foreach (var emp in p)
Console.WriteLine(emp.Id);
}
using (var p = new ChoCSVReader<Employee>("emp2.csv").WithFirstLineHeader())
{
foreach (var emp in p)
Console.WriteLine(emp.Id);
}

22.17. How to extract CSV file to DataTable?

You can do it with Cinchoo ETL with few lines of codes

using (var p = new ChoCSVReader("emp.csv").WithFirstLineHeader())
{
DataTable dt = p.AsDataTable();
}

22.18. How to extract CSV file to DataReader?

You can do it with Cinchoo ETL with few lines of codes

using (var p = new ChoCSVReader("emp.csv").WithFirstLineHeader())
{
IDataReader dr = p.AsDataReader();
while (dr.Read())
{
Console.WriteLine("Id: {0}, Name: {1}", dr[0], dr[1]);
}
}

22.19. How to handle column values with quotes in it?

You can specify the colums having values with quotes by setting QuoteField attribute value as true. Let say, the below CSV file comes with Name column with quotes around them

Emp.csv

Id, Name
1, "Tom"
2, "Mark"

You can specify the Name property in the POCO object with QuoteField as true.

public class Employee
{
[ChoCSVRecordField(1)]
public int Id { get; set; }

[ChoCSVRecordField(1, QuoteField = true)]
public int Name { get; set; }
}

22.20. How to read a CSV file into a typed DataTable?

Cinchoo CSV reader simplyfies it by exposing Fill() method to populate CSV file to typed datatable.

Lets say, DataSet1 is created with Employees typed datatable. Sample below shows how to load the CSV to it.

DataSet1 ds = new DataSet1();
using (var p = new ChoCSVReader("emp.csv").WithFirstLineHeader())
{
p.Fill(ds.Employees);
}

22.21. How can I find empty lines in csv file for tracking purpose?

Cinchoo CSV reader exploses callback event to report the empty line found in the CSV file.

The sample below shows how to achieve it in dynamic model

static void ReportEmptyLines()
{
using (var p = new ChoCSVReader("EmptyLines.csv").WithFirstLineHeader()
.Setup(s => s.EmptyLineFound += (o, e) =>
{
Console.WriteLine(e.LineNo);
})
)
{
foreach (dynamic rec in p)
Console.WriteLine(rec.DumpAsJson());
}
}

In a POCO model, you can also track them by implementing record object by IChoEmptyLineReportable interface.

public class Employee : IChoEmptyLineReportable 
{
[ChoCSVRecordField(1)]
public int Id { get; set; }

[ChoCSVRecordField(1, QuoteField = true)]
public int Name { get; set; }

bool EmptyLineFound(long lineNo)
{
Console.WriteLine("Empty line at: " + lineNo);
return true; //true to continue the process, otherwise false
}
}

Then parsing code looks as below

static void ReportEmptyLines()
{
using (var p = new ChoCSVReader<Employee>("EmptyLines.csv").WithFirstLineHeader())
{
foreach (var rec in p)
Console.WriteLine(rec.DumpAsJson());
}
}

22.22. How can I change the order of the fields?

If you have multiple classes with the below setup

public class Employee
{
public int Id { get; set; }
public string Name { get; set; }
}
public class FullTime : Employee
{
public double Salary { get; set; }
public string Department { get; set; }
}
public class Contract : Employee
{
public double Rate { get; set; }
public string Department { get; set; }
}

Cinchoo CSV reader exploses callback event to report the empty line found in the CSV file.

The sample below shows how to achieve it in dynamic model

static void ReportEmptyLines()
{
using (var p = new ChoCSVReader("EmptyLines.csv").WithFirstLineHeader()
.Setup(s => s.EmptyLineFound += (o, e) =>
{
Console.WriteLine(e.LineNo);
})
)
{
foreach (dynamic rec in p)
Console.WriteLine(rec.DumpAsJson());
}
}

22.23. How to turn off column type discovery?

Cinchoo CSV reader automatically discover column type at it best in dynamic model. You can turn this feature off, by setting Configuration.MaxScanRows to 0. In this case, all the column types are treated as string type unless specified explicitly.

static void TurnOffColumnTypeDiscovery()
{
using (var p = new ChoCSVReader("EmptyLines.csv").WithFirstLineHeader()
.Configure(c => c.MaxScanRows = 0)
)
{
foreach (var rec in p)
Console.WriteLine(rec.DumpAsJson());
}
}

22.24. How to skip lines conditionally during CSV parsing?

In case the CSV file comes with lines besides actual CSV data and you wanted to ignore them, Cinchoo exposes callback event SkipUntil to skip those lines. Sample below shows how to skip lines of CSV file

static void SkipUntilTest()
{
using (var p = new ChoCSVReader("EmptyLines.csv").WithFirstLineHeader()
.Setup(p => p.SkipUntil += (o, e) =>
{
string line = e.Source as string;
e.Skip = !line.StartsWith("** Some Match **")
})
)
{
foreach (var rec in p)
Console.WriteLine(rec.DumpAsJson());
}
}

22.25. How to stop CSV parsing conditionally?

In case the CSV file comes with lines besides actual CSV data and you wanted to stop the parsing once you come across some invalid lines, Cinchoo exposes callback event DoWhile to customize the logic and stop the parsing if needed. Sample below shows how to stop the CSV parsing

static void DoWhileTest()
{
using (var p = new ChoCSVReader("EmptyLines.csv").WithFirstLineHeader()
.Setup(p => p.DoWhile += (o, e) =>
{
string line = e.Source as string;
e.Stop = line.StartsWith("** Some Match **")
})
)
{
foreach (var rec in p)
Console.WriteLine(rec.DumpAsJson());
}
}

22.26. Does Cinchoo reader supports loading CSV to child classes?

Yes, it does. Make sure the field names are distinct. In case, if there are duplicates then you can resolve them by specifying unique names using DisplayNameAttribute. Also DisplayNameAttribute can be used to map the class member to specific CSV column. Sample below shows how to do it

For a sample CSV file:

SITE_ID,HOUSE,STREET,CITY,STATE,ZIP,APARTMENT
44,545395,PORT ROYAL,CORPUS CHRISTI,TX,,2
44,608646,TEXAS AVE,ODESSA,TX,79762,
44,487460,EVERHART RD,CORPUS CHRISTI,TX,78413,
44,275543,EDWARD GARY,SAN MARCOS,TX,78666,4
44,136811,MAGNOLIA AVE,SAN ANTONIO,TX1,,1

Class structure:

public class Site
{
public int SiteID { get; set; }
public int House { get; set; }
public SiteAddress SiteAddress { get; set; }
public int Apartment { get; set; }
}
public class SiteAddress
{
public string Street { get; set; }
public string City { get; set; }
public SitePostal SitePostal { get; set; }
}
public class SitePostal
{
public string State { get; set; }
public string Zip { get; set; }
}

Parsing code:

using (var p = new ChoCSVReader<Site>("Sample3.csv")
.WithFirstLineHeader()
)
{
foreach (var rec in p)
Console.WriteLine(rec.Dump());
}

22.27. How to turn the validation on child object?

By decorating child class member with ChoValidateObjectAttribute, you can turn the validation on it.

public class Site
{
[Required(ErrorMessage = "SiteID can't be null")]
public int SiteID { get; set; }
[Required]
public int House { get; set; }
[ChoValidateObject]
public SiteAddress SiteAddress { get; set; }
public int Apartment { get; set; }
}
public class SiteAddress
{
[Required]
public string Street { get; set; }
[Required]
[RegularExpression("^[a-zA-Z][a-zA-Z ]*$")]
public string City { get; set; }
}

In above, the SiteAddress is a child member decorated with ChoValidateObjectAttribute to fire the object validation during the CSV parsing.

Sample below shows loading CSV file, with validation on

using (var p = new ChoCSVReader<Site>("Sample3.csv")
.WithFirstLineHeader()
.Configure(c => c.ObjectValidationMode = ChoObjectValidationMode.ObjectLevel)
)
{
foreach (var rec in p)
Console.WriteLine(rec.Dump());
}

22.28. How to specify CSV column size to member?

You can use either ChoCSVRecordFieldAttribute or StringLengthAttribute (System.ComponentModel.DataAnnotations) to specify size of each CSV column value can be. By default, CSV reader truncate and load the CSV values if over the specified size. To turn off the truncate behavior, specify ChoCSVConfiguration.Truncate to false. If truncate is off, an exception will be raised if CSV value found over the size.

public class Site
{
[Required(ErrorMessage = "SiteID can't be null")]
[StringLength(5)]
public int SiteID { get; set; }
[Required]
public int House { get; set; }
[ChoValidateObject]
public SiteAddress SiteAddress { get; set; }
public int Apartment { get; set; }
}

Sample above, SiteID is specified with size 10 using StringLengthAttribute.

22.28. How to specify CSV column name to member?

You can use either ChoCSVRecordFieldAttribute or DisplayAttribute (System.ComponentModel.DataAnnotations) to map a CSV column to object member.

public class Site
{
[Required(ErrorMessage = "SiteID can't be null")]
[Display(Name="ID")]
public int SiteID { get; set; }
[Required]
public int House { get; set; }
[ChoValidateObject]
public SiteAddress SiteAddress { get; set; }
public int Apartment { get; set; }
}

22.29. How to handle null special values in CSV?

Cinchoo handles null special values in the CSV values via Configuration.NullValue.

For CSV file:

Id, Name, City
1, Tom, #NULL#
2, Mark, NJ
3, Lou, FL
4, Smith, PA
5, Raj, DC

In the above CSV, some city values are specified with #NULL# to represent null values. This can be handled as below

using (var cp2 = new ChoCSVReader(new StringReader(csv))
.WithFirstLineHeader()
.Configure(c => c.NullValue = "#NULL#")
)
{
foreach (var rec in cp2)
Console.WriteLine(rec.Dump());
}

Or if POCO object is used for parsing, it can be specified at object level as below

[ChoCSVRecordObject(NullValue = "#NULL#")]
public class Emp
{
public int Id { get; set; }
public string Name { get; set; }
public string City { get; set; }
}

Or at the member level

public class Emp
{
[ChoCSVRecordField(1)]
public int Id { get; set; }
[ChoCSVRecordField(2)]
public string Name { get; set; }
[ChoCSVRecordField(3, NullValue = "#NULL#")]
public string City { get; set; }
}

22.30 Does Cinchoo handles currency values?

Yes, it does. Cinchoo auto discover them based on current culture and load them as ChoCurrency objects by default.

For CSV file:

Id, Name, City, Salary
1, Tom, NY, $10000
2, Mark, NJ, $12000
3, Lou, FL, $150000
4, Smith, PA, $132000
5, Raj, DC, $200500

In the above CSV, Salary field will be loaded as ChoCurrency type.

using (var cp2 = new ChoCSVReader(new StringReader(csv))
.WithFirstLineHeader()
)
{
foreach (var rec in cp2)
Console.WriteLine(rec.Dump());
}

Alternatively you can load the currency values as double as well by specifying Configuration.TreatCurrencyAsDecimal as true.

foreach (var p in new ChoCSVReader("Sample2.csv").WithFirstLineHeader()
.Configure(c => c.TreatCurrencyAsDecimal = false)
)
{
Console.WriteLine(p.Dump());
}

22.31 Can Cinchoo read different record types in same CSV?

Yes, it does. You going to use custom record selector to scan each line and return matching record type to the driver to load the line.

For CSV file:

PlaceName,Longitude,Latitude,Elevation
NameString,123.456,56.78,40
Date,Count
1/1/2012,1
2/1/2012,3
3/1/2012,10
4/2/2012,6

Define POCO classes matching the records in the CSV file as below

public class LocationDef
{
public string PlaceName { get; set; }
public double Longitude { get; set; }
public double Latitude { get; set; }
public double Elevation { get; set; }
}
public class CountDef
{
public DateTime Date { get; set; }
public int Count { get; set; }
}

In the above CSV, Salary field will be loaded as ChoCurrency type.

using (var p = new ChoCSVReader(new StringReader(csv))
.WithCustomRecordSelector((l) =>
{
Tuple<long, string> kvp = l as Tuple<long, string>;
if (kvp.Item1 == 1 || kvp.Item1 == 3 || kvp.Item1 == 4) //Skip the headers and empty lines
return null;
if (kvp.Item1 < 4)
return typeof(LocationDef);
else
return typeof(CountDef);
}
)
)
{
foreach (var rec in p)
Console.WriteLine(ChoUtility.Dump(rec));
}

22.32. How to validate CSV file?

You may have requirement to take the CSV file, validate them before doing any other operation on it (ex. saving to db). Cinchoo gives API to do validation on it. It leverages DataAnnonations/Validation library to perform the CSV validation. Sample below shows how to do it.

First declare POCO object with validation rules

public class Site
{
[Required(ErrorMessage = "SiteID can't be null")]
public int SiteID { get; set; }
[Required]
public int House { get; set; }
[ChoValidateObject]
public SiteAddress SiteAddress { get; set; }
public int Apartment { get; set; }
}

To perform validation,

using (var p = new ChoCSVReader<Site>("Sample3.csv")
.WithFirstLineHeader(true)
)
{
Exception ex;
Console.WriteLine("IsValid: " + p.IsValid(out ex));
}

22.33. How to sort large CSV file?

Large CSV files present a challenge when need arises to sort. It fails with OutOfMemoryException if you try to do with .NET application. With Microsoft Excel for sorting on large files, you will promptly receive an error the first time.

If a string sort will work for you, then just use the Windows SORT command. Sort the file and be done with it.

If you need to filter and convert the file, specifically the date / custom type fields, then you would need to write a small conversion program that converts the fields whatever you like, and rewrites the record. This is where Cinchoo ETL framework places a role to ease up the conversion of large CSV file the way you want with all possible requirements with minimal memory footprint and ultra-fast performance.

Sample CSV File:

CustId,Name,Balance,AddedDate
1732,Tom Perez,435.00,05/11/2002
5541,Pedro Gomez,12342.30,06/02/2000
1122,Mark Politti,0.00,01/02/2004
1924,Pablo Ramirez,3321.30,11/24/2002

Define a POCO class

public class Customer
{
public int CustId { get; set; }
public string Name { get; set; }
public decimal Balance { get; set; }
public DateTime AddedDate { get; set; }
}

Code shows how to sort the feed by ‘AddedDate’

public static void POCOSort()
{
using (var dr = new ChoCSVReader<Customer>(@"Test.csv").WithFirstLineHeader())
{
foreach (var rec in dr.ExternalSort(new ChoLamdaComparer<Customer>((e1, e2) => DateTime.Compare(e1.AddedDate, e1.AddedDate))))
{
Console.WriteLine(rec.CustId);
}
}
}

Sorting CSV file without POCO class

public static void DynamicSort()
{
using (var dr = new ChoCSVReader(@"Test.csv").WithFirstLineHeader())
{
foreach (var rec in dr.ExternalSort(new ChoLamdaComparer<dynamic>((e1, e2) => DateTime.Compare(e1.AddedDate, e1.AddedDate))))
{
Console.WriteLine(rec.CustId);
}
}
}

22.34 How to ignore a member from CSV loading?

In opt-out model, you can specify a member from CSV loading using ChoIgnoreMemberAttribute

public class Employee
{
public int Id { get; set; }
public int Name { get; set; }
[ChoIgnoreMember]
public string City { get; set; }
}

22.35. How to handle custom datetime formatted values?

There are number ways you can handle custom date values in the CSV file. The simplest, build-in option would be setting custom format string in formatText to the CSV column to handle it.

For a sample CSV file

Id, DateCreated
1, 20180201
2, 20171120

Where DateCreated column comes with date values in ‘yyyyMMdd’ format. Sample below shows to handle such values and load the file successfully using dynamic model

using (var p = new ChoCSVReader(new StringReader(csv))
.WithFirstLineHeader()
.WithField("Id", fieldType: typeof(int))
.WithField("Date", fieldType: typeof(DateTime), formatText: "yyyyMMdd")
)
{
foreach (var rec in p)
Console.WriteLine(rec.Dump());
}

In a POCO opt-out model, you have to draft class as below

[ChoCSVFileHeader]
public class Consumer
{
public int Id { get; set; }
[DisplayFormat(DataFormatString = "yyyyMMdd")]
public DateTime DateCreated { get; set; }
}

where DateCreated field is decorated with DisplayFormat attribute with format text.

In a POCO opt-in model, you must define the class with all the members with ChoCSVRecordFieldAttrbute as below

[ChoCSVFileHeader]
public class ConsumerOptIn
{
[ChoCSVRecordField(1)]
public int Id { get; set; }
[ChoCSVRecordField(2, FormatText = "yyyyMMdd")]
public DateTime DateCreated { get; set; }
}

In above, DateCreated field is specified with format text in ChoCSVRecordFieldAttribute to care for custom formatting need.

22.36. How to handle custom boolean values

There are number ways you can handle custom boolean values in the CSV file. The simplest, build-in option would be setting custom format string in formatText to the CSV column to handle it.

Here are the possible standard formatting specs available to use (case-insensitive comparision is performed on the bool values)

  1. YOrN — ‘Y’ — true, ’N’ — false
  2. TOrF — ‘T’ — true, ‘F’ — false
  3. TrueOrFalse — ‘true’ — true, ‘false’ — false
  4. YesOrNo — ‘yes’ — true, ‘no’ — false
  5. ZeroOrOne — ‘1’ — true, ‘0’ — false

For a sample CSV file

Id, DateCreated, IsActive
1, 20180201, A
2, 20171120, B

Where IsActive column comes with custom boolean values. ‘A’ — true, other values as false.

Sample below shows to handle such values and load the file successfully using dynamic model

using (var p = new ChoCSVReader(new StringReader(csv))
.WithFirstLineHeader()
.WithField("Id", fieldType: typeof(int))
.WithField("Date", fieldType: typeof(DateTime), formatText: "yyyyMMdd")
.WithField("IsActive", fieldType: typeof(bool), formatText: "A")
)
{
foreach (var rec in p)
Console.WriteLine(rec.Dump());
}

In a POCO opt-out model, you have to draft class as below

[ChoCSVFileHeader]
public class Consumer
{
public int Id { get; set; }
[DisplayFormat(DataFormatString = "yyyyMMdd")]
public DateTime DateCreated { get; set; }
[DisplayFormat(DataFormatString = "A")]
public bool IsActive { get; set; }
}

where IsActive field is decorated with DisplayFormat attribute with format text as ‘A’.

In a POCO opt-in model, you must define the class with all the members with ChoCSVRecordFieldAttrbute as below

[ChoCSVFileHeader]
public class ConsumerOptIn
{
[ChoCSVRecordField(1)]
public int Id { get; set; }
[ChoCSVRecordField(2, FormatText = "yyyyMMdd")]
public DateTime DateCreated { get; set; }
[ChoCSVRecordField(3, FormatText = "A")]
public bool IsActive { get; set; }
}

In above, IsActive field is specified with format text in ChoCSVRecordFieldAttribute to care for custom formatting need.

22.37. How to handle custom boolean values

Cinchoo does take care of it seamlessly. Just define the class structure with mapping CSV column to each members.

For a sample CSV file

Id, Name, Street, City
1, Tom, 1 Main Street, New York
2, Mark, 10 River Road, Boston

You can define class structure as below matching the CSV file by field names as below

public class StudentInfo
{
[DisplayName("Id")]
public string Id { get; set; }
public Student Student { get; set; }
}
public class Student
{
[DisplayName("Name")]
public string Name { get; set; }
public Address Address { get; set; }
}
public class Address
{
[DisplayName("Street")]
public string Street { get; set; }
[DisplayName("City")]
public string City { get; set; }
}

Or you can define class structure as below matching the CSV file by field position as below

public class StudentInfo
{
[ChoFieldPosition(1)]
public string Id { get; set; }
public Student Student { get; set; }
}
public class Student
{
[ChoFieldPosition(2)]
public string Name { get; set; }
public Address Address { get; set; }
}
public class Address
{
[ChoFieldPosition(3)]
public string Street { get; set; }
[ChoFieldPosition(4)]
public string City { get; set; }
}

To parse CSV file to above class structure, you can do as below

using (var r = ChoCSVReader<StudentInfo>.LoadText(csv)
.WithFirstLineHeader()
)
{
foreach (var rec in r)
{
Console.WriteLine(rec.Dump());
}
}

22.38. How to read CSV to Collection / Array members?

Cinchoo handles loading of CSV into array/collection members of a specific type. Just define the class structure with mapping CSV column to each members.

For a sample CSV file, where CreId_0, CreName_0, CreId_1, CreName_2 are values to be loaded into collection objects

Id, Name, CreId_0, CreName_0, CreId_1, CreName_1
1, Tom, CI0, CN0, CI1, CN1
2, Mark, CI20, CN20, CI21, CN21

You can define class structure as below matching the CSV file by field names as below

public class StudentInfo
{
public string Id { get; set; }
public string Name { get; set; }
[Range(1, 2)]
public Course[] Courses { get; set; }
[DisplayName("Grade")]
[Range(1, 3)]
public List<string> Grades { get; set; }
public StudentInfo()
{
Courses = new Course[2];
}
}
public class Course
{
[DisplayName("CreId")]
public string CourseId { get; set; }
[DisplayName("CreName")]
public string CourseName { get; set; }
}

In above, define Courses as array of Course object with RangeAttribute to specify the number of occurances (in this case 2 items [0, 1]). Must intialize Courses with array of objects.

Here is the sample code to load the CSV into StudentInfo objects

string csv = @"Id, Name, CreId_0, CreName_0, CreId_1, CreName_1,Grade_1,Grade_2,Grade_3
1, Tom, CI0, CN0, CI1, CN1,A,B,C
2, Mark, CI20, CN20, CI21, CN21,A,B,C
";
using (var r = ChoCSVReader<StudentInfo>.LoadText(csv)
.WithFirstLineHeader()
)
{
foreach (var rec in r)
{
Console.WriteLine(rec.Dump());
}
}

Default array separator is ‘_’. If your CSV file comes with different array separator, you can specify them in Configuration.ArrayIndexSeparator.

Sample below shows how to approach using configuration

string csv = @"Id, Name, CreId_0, CreName_0, CreId_1, CreName_1,Grade_1,Grade_2,Grade_3
1, Tom, CI0, CN0, CI1, CN1,A,B,C
2, Mark, CI20, CN20, CI21, CN21,A,B,C
";
var config = new ChoCSVRecordConfiguration<StudentInfo>()
.Map(f => f.Id)
.Map(f => f.Grades, "Grade")
.IndexMap(f => f.Courses, 0, 1)
.IndexMap(f => f.Grades, 1, 3)
.MapForType<Course>(f => f.CourseId, "CreId")
.MapForType<Course>(f => f.CourseName, "CreName")
.WithFirstLineHeader();
using (var r = ChoCSVReader<StudentInfo1>.LoadText(csv, config))
{
foreach (var rec in r)
{
Console.WriteLine(rec.Dump());
}
}

In above, use the Map, IndexMap, MapForType helper methods to configure the CSV layout with POCO object model to successfully load the CSV file in defined object structure,

22.39. How to preserve leading / padded zeros correctly in Excel?

When you open CSV file in Excel, all of the leading zeros are cut off any numbers. This is actually an Excel issue. To overcome this issue the CSV field values must be saved from 08820 as ="08820". This will preserve the leading zeros when you open them in excel.

If the CSV file is excel aware file, you can parse them using ChoCSVReader to handle these values out of the box. There are couple of ways you can instruct the parser.

  • To handle specific field by setting ExcelField property to true.
  • To handle globally, by specifying ImplicitExcelFieldValueHandling to true to handle them.

Listing 22.39.1 Global excel field value handling approach

static void ExcelFieldTest()
{
string csv = @"Id,Name,Salary
1,Carl,=""10000""
2,Mark,=""5000""
3,Tom,=""2000""";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.Configure(c => c.ImplicitExcelFieldValueHandling = true)
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

Listing 22.39.2 Targetted CSV field excel value handling approach

static void ExcelFieldTest()
{
string csv = @"Id,Name,Salary
1,Carl,=""10000""
2,Mark,=""5000""
3,Tom,=""2000""";
using (var parser = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithField("Id")
.WithField("Name")
.WithField("Salary", m => m.Configure(c => c.ExcelField = true))
)
{
foreach (var rec in parser)
{
Console.WriteLine(String.Format("Id: {0}", rec.Id));
Console.WriteLine(String.Format("Name: {0}", rec.Name));
Console.WriteLine(String.Format("Salary: {0}", rec.Salary));
}
}
}

23.40. Does ChoCSVReader supports multiline header?

In a rare case, some CSV file may come with multi-line header. ChoCSVReader handle it seamlessly. Sample CSV below with multiline csv header at line 1–2

Listing 22.40.1 Multi-Line header CSV file

CUSTOMER,CUSTOMER NAME,INVOICE ID,PURCHASE,PRODUCT ID,PURCHASED,PURCHASED QTY,LOCATION
ID,DATE,AMOUNT,QUANTITY ID
22160,MANSFIELD BROTHERS HEATING & AIR,sss.001,02/08/2017,193792,69.374,2,30
27849,OWSLEY SUPPLY LLC - EQUIPMENT,sss.001,03/14/2017,123906,70.409,1,2
27849,OWSLEY SUPPLY LLC - EQUIPMENT,sss.001,03/14/2017,40961,10.000,1,2
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,116511,63.016,1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,116511,-63.016,-1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,122636,30.748,1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,137661,432.976,1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,137661,-432.976,-1,15

Sample code shows how to parse the above CSV file successfully

Listing 22.40.2 Parsing Multi-Line header CSV file

static void MultiLineHeaderTest()
{
string csv = @"CUSTOMER,CUSTOMER NAME,INVOICE ID,PURCHASE,PRODUCT ID,PURCHASED,PURCHASED QTY,LOCATION
ID,DATE,AMOUNT,QUANTITY ID
22160,MANSFIELD BROTHERS HEATING & AIR,sss.001,02/08/2017,193792,69.374,2,30
27849,OWSLEY SUPPLY LLC - EQUIPMENT,sss.001,03/14/2017,123906,70.409,1,2
27849,OWSLEY SUPPLY LLC - EQUIPMENT,sss.001,03/14/2017,40961,10.000,1,2
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,116511,63.016,1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,116511,-63.016,-1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,122636,30.748,1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,137661,432.976,1,15
16794,ALEXANDER GILMORE dba AL'S HEATING,sss.001,01/25/2017,137661,-432.976,-1,15";
foreach (var rec in ChoCSVReader.LoadText(csv)
.WithMaxScanRows(2)
.Setup(s =>
{
s.MultiLineHeader += (o, e) =>
{
if (e.LineNo <= 2)
e.IsHeader = true;
else
e.IsHeader = false;
};
})
.Configure(c => c.TurnOnMultiLineHeaderSupport = true)
.ThrowAndStopOnMissingField(false)
)
Console.WriteLine(rec.Dump());
}

23.41. How to load CSV to Dictionary Member of POCO type?

If your CSV file comes with columns, wanted to load them to dictionary member, you can do so with ChoCSVReader. For sample CSV file below

Id, Name, K1, K2
1, Tom, A, B
2, Mark, C, D

Where K1, K2 are coulmns you wanted to load into dictionary member.

First define a POCO class as below

public class StudentInfo
{
public string Id { get; set; }
public string Name { get; set; }
[ChoDictionaryKey("K1, K2")]
public Dictionary<string, string> Grades { get; set; }
}

In above, Grades member decorated with ChoDictionaryKeyAttribute with possible CSV columns to be loaded into.

Then you can consume the CSV file, ChoCSVReader will take care of plumbing work to load the data into the object appropriately.

public static void CSV2DictionaryMemberTest()
{
string csv = @"Id, Name, K1, K2
1, Tom, A, B
2, Mark, C, D
";
using (var r = ChoCSVReader<StudentInfo2>.LoadText(csv))
{
foreach (var rec in r)
Console.WriteLine(rec.Dump());
}
}

Next, I’ll show you how to achieve this using Configuration approach

public static void CSV2DictionaryMemberTest()
{
string csv = @"Id, Name, K1, K2
1, Tom, A, B
2, Mark, C, D
";
var config = new ChoCSVRecordConfiguration<StudentInfo2>()
.Map(f => f.Id)
.Map(f => f.Name)
.DictionaryMap(f => f.Grades, new string[] { "K1", "K2" });
using (var r = ChoCSVReader<StudentInfo2>.LoadText(csv, config))
{
foreach (var rec in r)
{
Console.WriteLine(rec.Dump());
}
}
}

23.42. Can duplicate names while reading dynamic records be handled?

If the CSV file comes with duplication column names, and wanted to handle it automatically by auto incrementing number ‘_2’, ‘_3’ etc. in the parser. Yes, ChoCSVReader does it automatically.

For sample CSV file below

Id, Name, Name
1, Tom, Mark
2, Kevin, Fahey

Code below shows how to load them into dynamic records

static void DuplicateNameInDynamicModeTest()
{
string csv = @"Id, Name, Name
1, Tom, Mark
2, Kevin, Fahey";
using (var r = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.AutoIncrementDuplicateColumnNames()
.ArrayIndexSeparator('_')
)
{
foreach (var rec in r)
Console.WriteLine(rec.Dump());
}
}

In here, the CSV file comes with 2 columns in same names. By instructing ChoCSVReader with AutoIncrementDuplicateColumnNames you can load this file successfully. Dynamic object will have Id, Name, Name_2 as their members with values in it.

23.43. Can ChoCSVReader find delimiter in CSV file automatically?

Yes, it does. Sample below show how to

static void AutoDetectDelimiter()
{
string csv = @"Id;Guid
10;cc6f0116-589a-4cf1-8605-a4eb6ab3bd34
20;cc6f0116-589a-4cf1-8605-a4eb6ab3bd34
";
using (var r = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
.WithMaxScanRows(1)
.AutoDetectDelimiter()
)
{
foreach (var rec in r)
Console.WriteLine(rec.Dump());
}
}

By setting `AutoDetectDelimiter` along with `WithMaxScanRows`, you can instruct ChoCSVReader to scan and detect the CSV delimiter automatically.

23. ChoTSVReader

ChoTSVReader is specialized version of CSV reader, used to parse TSV (Tab Seperated) files.

static void TSV2Xml()
{
string tsv = @"Time Object pmPdDrb pmPdcDlSrb
00:45 EUtranCellFDD=GNL02294_7A_1 2588007 1626
00:45 EUtranCellFDD=GNL02294_7B_1 18550 32
00:45 EUtranCellFDD=GNL02294_7C_1 26199 38
00:45 EUtranCellFDD=GNL02294_9A_1 3857243 751";
StringBuilder xml = new StringBuilder();
using (var r = ChoTSVReader.LoadText(tsv)
.WithFirstLineHeader()
)
{
using (var w = new ChoXmlWriter(xml)
.Configure(c => c.RootName = "xmlnodes")
.Configure(c => c.NodeName = "xmlnode")
)
w.Write(r);
}
Console.WriteLine(xml.ToString());
}

Sample above shows to parse TSV formatted file to Xml output.

--

--

Cinchoo
Cinchoo

Written by Cinchoo

ETL framework for .NET (Parser / Writer for CSV, Flat, Xml, JSON, Key-Value, Parquet, Yaml, Avro formatted files)

No responses yet